Loading…
Frictional boundary layer effect on vortex condensation in rotating turbulent convection
We perform direct numerical simulations of rotating Rayleigh--Bénard convection of fluids with low (\(Pr=0.1\)) and high (\(Pr=5\)) Prandtl numbers in a horizontally periodic layer with no-slip top and bottom boundaries. At both Prandtl numbers, we demonstrate the presence of an upscale transfer of...
Saved in:
Published in: | arXiv.org 2020-01 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Aguirre Guzmán, Andrés J Madonia, Matteo Cheng, Jonathan S Ostilla-Mónico, Rodolfo Clercx, Herman J H Kunnen, Rudie P J |
description | We perform direct numerical simulations of rotating Rayleigh--Bénard convection of fluids with low (\(Pr=0.1\)) and high (\(Pr=5\)) Prandtl numbers in a horizontally periodic layer with no-slip top and bottom boundaries. At both Prandtl numbers, we demonstrate the presence of an upscale transfer of kinetic energy that leads to the development of domain-filling vortical structures. Sufficiently strong buoyant forcing and rotation foster the quasi-two-dimensional turbulent state of the flow, despite the formation of plume-like vertical disturbances promoted by so-called Ekman pumping from the viscous boundary layer. |
doi_str_mv | 10.48550/arxiv.2001.11889 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2350184283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350184283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-b1628493ad33e6940845c2301fa4847160807ce5ef012105e5a791d2d0315af33</originalsourceid><addsrcrecordid>eNotj8FKw0AURQdBsNR-gLsB16nvzZtJJkspVoVCN124K5PkRVLCjE4mof17U3V17-Jw4AjxgLDW1hh4cvHcTWsFgGtEa8sbsVBEmFmt1J1YDcMJAFReKGNoIT62satTF7zrZRVG37h4kb27cJTctlwnGbycQkx8lnXwDfvBXXHZeRlDmr__lGmM1dizT1dk4l_fvbhtXT_w6n-X4rB9OWzest3-9X3zvMucUZRVmCurS3INEeelBqtNrQiwddrqAnOwUNRsuAVUCIaNK0psVAOExrVES_H4p_2K4XvkIR1PYYxzzXBUZADnakv0A4giU2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350184283</pqid></control><display><type>article</type><title>Frictional boundary layer effect on vortex condensation in rotating turbulent convection</title><source>Publicly Available Content (ProQuest)</source><creator>Aguirre Guzmán, Andrés J ; Madonia, Matteo ; Cheng, Jonathan S ; Ostilla-Mónico, Rodolfo ; Clercx, Herman J H ; Kunnen, Rudie P J</creator><creatorcontrib>Aguirre Guzmán, Andrés J ; Madonia, Matteo ; Cheng, Jonathan S ; Ostilla-Mónico, Rodolfo ; Clercx, Herman J H ; Kunnen, Rudie P J</creatorcontrib><description>We perform direct numerical simulations of rotating Rayleigh--Bénard convection of fluids with low (\(Pr=0.1\)) and high (\(Pr=5\)) Prandtl numbers in a horizontally periodic layer with no-slip top and bottom boundaries. At both Prandtl numbers, we demonstrate the presence of an upscale transfer of kinetic energy that leads to the development of domain-filling vortical structures. Sufficiently strong buoyant forcing and rotation foster the quasi-two-dimensional turbulent state of the flow, despite the formation of plume-like vertical disturbances promoted by so-called Ekman pumping from the viscous boundary layer.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2001.11889</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary layers ; Computational fluid dynamics ; Computer simulation ; Fluid flow ; Kinetic energy ; Rayleigh-Benard convection ; Rotating fluids ; Rotation ; Turbulent flow</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2350184283?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Aguirre Guzmán, Andrés J</creatorcontrib><creatorcontrib>Madonia, Matteo</creatorcontrib><creatorcontrib>Cheng, Jonathan S</creatorcontrib><creatorcontrib>Ostilla-Mónico, Rodolfo</creatorcontrib><creatorcontrib>Clercx, Herman J H</creatorcontrib><creatorcontrib>Kunnen, Rudie P J</creatorcontrib><title>Frictional boundary layer effect on vortex condensation in rotating turbulent convection</title><title>arXiv.org</title><description>We perform direct numerical simulations of rotating Rayleigh--Bénard convection of fluids with low (\(Pr=0.1\)) and high (\(Pr=5\)) Prandtl numbers in a horizontally periodic layer with no-slip top and bottom boundaries. At both Prandtl numbers, we demonstrate the presence of an upscale transfer of kinetic energy that leads to the development of domain-filling vortical structures. Sufficiently strong buoyant forcing and rotation foster the quasi-two-dimensional turbulent state of the flow, despite the formation of plume-like vertical disturbances promoted by so-called Ekman pumping from the viscous boundary layer.</description><subject>Boundary layers</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid flow</subject><subject>Kinetic energy</subject><subject>Rayleigh-Benard convection</subject><subject>Rotating fluids</subject><subject>Rotation</subject><subject>Turbulent flow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj8FKw0AURQdBsNR-gLsB16nvzZtJJkspVoVCN124K5PkRVLCjE4mof17U3V17-Jw4AjxgLDW1hh4cvHcTWsFgGtEa8sbsVBEmFmt1J1YDcMJAFReKGNoIT62satTF7zrZRVG37h4kb27cJTctlwnGbycQkx8lnXwDfvBXXHZeRlDmr__lGmM1dizT1dk4l_fvbhtXT_w6n-X4rB9OWzest3-9X3zvMucUZRVmCurS3INEeelBqtNrQiwddrqAnOwUNRsuAVUCIaNK0psVAOExrVES_H4p_2K4XvkIR1PYYxzzXBUZADnakv0A4giU2E</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Aguirre Guzmán, Andrés J</creator><creator>Madonia, Matteo</creator><creator>Cheng, Jonathan S</creator><creator>Ostilla-Mónico, Rodolfo</creator><creator>Clercx, Herman J H</creator><creator>Kunnen, Rudie P J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200131</creationdate><title>Frictional boundary layer effect on vortex condensation in rotating turbulent convection</title><author>Aguirre Guzmán, Andrés J ; Madonia, Matteo ; Cheng, Jonathan S ; Ostilla-Mónico, Rodolfo ; Clercx, Herman J H ; Kunnen, Rudie P J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-b1628493ad33e6940845c2301fa4847160807ce5ef012105e5a791d2d0315af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary layers</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid flow</topic><topic>Kinetic energy</topic><topic>Rayleigh-Benard convection</topic><topic>Rotating fluids</topic><topic>Rotation</topic><topic>Turbulent flow</topic><toplevel>online_resources</toplevel><creatorcontrib>Aguirre Guzmán, Andrés J</creatorcontrib><creatorcontrib>Madonia, Matteo</creatorcontrib><creatorcontrib>Cheng, Jonathan S</creatorcontrib><creatorcontrib>Ostilla-Mónico, Rodolfo</creatorcontrib><creatorcontrib>Clercx, Herman J H</creatorcontrib><creatorcontrib>Kunnen, Rudie P J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguirre Guzmán, Andrés J</au><au>Madonia, Matteo</au><au>Cheng, Jonathan S</au><au>Ostilla-Mónico, Rodolfo</au><au>Clercx, Herman J H</au><au>Kunnen, Rudie P J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frictional boundary layer effect on vortex condensation in rotating turbulent convection</atitle><jtitle>arXiv.org</jtitle><date>2020-01-31</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We perform direct numerical simulations of rotating Rayleigh--Bénard convection of fluids with low (\(Pr=0.1\)) and high (\(Pr=5\)) Prandtl numbers in a horizontally periodic layer with no-slip top and bottom boundaries. At both Prandtl numbers, we demonstrate the presence of an upscale transfer of kinetic energy that leads to the development of domain-filling vortical structures. Sufficiently strong buoyant forcing and rotation foster the quasi-two-dimensional turbulent state of the flow, despite the formation of plume-like vertical disturbances promoted by so-called Ekman pumping from the viscous boundary layer.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2001.11889</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2350184283 |
source | Publicly Available Content (ProQuest) |
subjects | Boundary layers Computational fluid dynamics Computer simulation Fluid flow Kinetic energy Rayleigh-Benard convection Rotating fluids Rotation Turbulent flow |
title | Frictional boundary layer effect on vortex condensation in rotating turbulent convection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frictional%20boundary%20layer%20effect%20on%20vortex%20condensation%20in%20rotating%20turbulent%20convection&rft.jtitle=arXiv.org&rft.au=Aguirre%20Guzm%C3%A1n,%20Andr%C3%A9s%20J&rft.date=2020-01-31&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2001.11889&rft_dat=%3Cproquest%3E2350184283%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-b1628493ad33e6940845c2301fa4847160807ce5ef012105e5a791d2d0315af33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350184283&rft_id=info:pmid/&rfr_iscdi=true |