Loading…
Carbon vacancy ordering in zirconium carbide powder
Ordered carbon vacancies were detected in zirconium carbide (ZrCx) powders that were synthesized by direct reaction. Zirconium hydride (ZrH2) and carbon black were used as starting powders with the molar ratio of ZrH2:C = 1:0.6. Powders were reacted at 1300°C or 2000°C. The major phase detected by x...
Saved in:
Published in: | Journal of the American Ceramic Society 2020-04, Vol.103 (4), p.2891-2898 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4034-f4c308f138e30f675fd298136792badd025c87082a85e004dbce46c8b33f5ad33 |
---|---|
cites | cdi_FETCH-LOGICAL-c4034-f4c308f138e30f675fd298136792badd025c87082a85e004dbce46c8b33f5ad33 |
container_end_page | 2898 |
container_issue | 4 |
container_start_page | 2891 |
container_title | Journal of the American Ceramic Society |
container_volume | 103 |
creator | Zhou, Yue Heitmann, Thomas W. Bohannan, Eric Schaeperkoetter, Joseph C. Fahrenholtz, William G. Hilmas, Gregory E. |
description | Ordered carbon vacancies were detected in zirconium carbide (ZrCx) powders that were synthesized by direct reaction. Zirconium hydride (ZrH2) and carbon black were used as starting powders with the molar ratio of ZrH2:C = 1:0.6. Powders were reacted at 1300°C or 2000°C. The major phase detected by x‐ray diffraction (XRD) was ZrCx. No excess carbon was observed by transmission electron microscopy (TEM) in powders synthesized at either temperature. Ordering of the carbon vacancies was identified by neutron powder diffraction (NPD) and further supported by selected area electron diffraction (SAED). The vacancies in carbon‐deficient ZrCx exhibited diamond cubic symmetry with a supercell that consisted of eight (2 × 2 × 2) ZrCx unit cells with the rock‐salt structure. Rietveld refinement of the neutron diffraction patterns revealed that the synthesis temperature did not have a significant effect on the degree of vacancy ordering in ZrCx powders. Direct synthesis of ZrC0.6 resulted in the partial ordering of carbon vacancies without the need for extended isothermal annealing as reported in previous experimental studies. |
doi_str_mv | 10.1111/jace.16964 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350194452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350194452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4034-f4c308f138e30f675fd298136792badd025c87082a85e004dbce46c8b33f5ad33</originalsourceid><addsrcrecordid>eNp9kEtLxDAQgIMoWFcv_oKCN6Hr5NWmx6WsLxa86DmkeUjKblNT67L-erPWs3MZhvlmhvkQusawxCnuOqXtEpd1yU5QhjnHBalxeYoyACBFJQico4tx7FKJa8EyRBsV29DnX0qrXh_yEI2Nvn_PfZ9_-6hD76ddrhPkjc2HsE_tS3Tm1Ha0V395gd7u16_NY7F5eXhqVptCM6CscExTEA5TYSm4suLOkFpgWlY1aZUxQLgWFQiiBLcAzLTaslKLllLHlaF0gW7mvUMMH5MdP2UXptink5JQnh5gjJNE3c6UjmEco3VyiH6n4kFikEcp8ihF_kpJMJ7hvd_awz-kfF4163nmB8RnYqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350194452</pqid></control><display><type>article</type><title>Carbon vacancy ordering in zirconium carbide powder</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhou, Yue ; Heitmann, Thomas W. ; Bohannan, Eric ; Schaeperkoetter, Joseph C. ; Fahrenholtz, William G. ; Hilmas, Gregory E.</creator><creatorcontrib>Zhou, Yue ; Heitmann, Thomas W. ; Bohannan, Eric ; Schaeperkoetter, Joseph C. ; Fahrenholtz, William G. ; Hilmas, Gregory E.</creatorcontrib><description>Ordered carbon vacancies were detected in zirconium carbide (ZrCx) powders that were synthesized by direct reaction. Zirconium hydride (ZrH2) and carbon black were used as starting powders with the molar ratio of ZrH2:C = 1:0.6. Powders were reacted at 1300°C or 2000°C. The major phase detected by x‐ray diffraction (XRD) was ZrCx. No excess carbon was observed by transmission electron microscopy (TEM) in powders synthesized at either temperature. Ordering of the carbon vacancies was identified by neutron powder diffraction (NPD) and further supported by selected area electron diffraction (SAED). The vacancies in carbon‐deficient ZrCx exhibited diamond cubic symmetry with a supercell that consisted of eight (2 × 2 × 2) ZrCx unit cells with the rock‐salt structure. Rietveld refinement of the neutron diffraction patterns revealed that the synthesis temperature did not have a significant effect on the degree of vacancy ordering in ZrCx powders. Direct synthesis of ZrC0.6 resulted in the partial ordering of carbon vacancies without the need for extended isothermal annealing as reported in previous experimental studies.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.16964</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Carbon black ; Chemical synthesis ; Diamonds ; Diffraction patterns ; Electron diffraction ; Isothermal annealing ; Neutron diffraction ; Neutrons ; nonstoichiometry ; Vacancies ; vacancy ordering ; Zirconium ; Zirconium carbide ; Zirconium hydrides</subject><ispartof>Journal of the American Ceramic Society, 2020-04, Vol.103 (4), p.2891-2898</ispartof><rights>2019 The American Ceramic Society</rights><rights>2020 American Ceramic Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4034-f4c308f138e30f675fd298136792badd025c87082a85e004dbce46c8b33f5ad33</citedby><cites>FETCH-LOGICAL-c4034-f4c308f138e30f675fd298136792badd025c87082a85e004dbce46c8b33f5ad33</cites><orcidid>0000-0001-6901-947X ; 0000-0002-8497-0092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Heitmann, Thomas W.</creatorcontrib><creatorcontrib>Bohannan, Eric</creatorcontrib><creatorcontrib>Schaeperkoetter, Joseph C.</creatorcontrib><creatorcontrib>Fahrenholtz, William G.</creatorcontrib><creatorcontrib>Hilmas, Gregory E.</creatorcontrib><title>Carbon vacancy ordering in zirconium carbide powder</title><title>Journal of the American Ceramic Society</title><description>Ordered carbon vacancies were detected in zirconium carbide (ZrCx) powders that were synthesized by direct reaction. Zirconium hydride (ZrH2) and carbon black were used as starting powders with the molar ratio of ZrH2:C = 1:0.6. Powders were reacted at 1300°C or 2000°C. The major phase detected by x‐ray diffraction (XRD) was ZrCx. No excess carbon was observed by transmission electron microscopy (TEM) in powders synthesized at either temperature. Ordering of the carbon vacancies was identified by neutron powder diffraction (NPD) and further supported by selected area electron diffraction (SAED). The vacancies in carbon‐deficient ZrCx exhibited diamond cubic symmetry with a supercell that consisted of eight (2 × 2 × 2) ZrCx unit cells with the rock‐salt structure. Rietveld refinement of the neutron diffraction patterns revealed that the synthesis temperature did not have a significant effect on the degree of vacancy ordering in ZrCx powders. Direct synthesis of ZrC0.6 resulted in the partial ordering of carbon vacancies without the need for extended isothermal annealing as reported in previous experimental studies.</description><subject>Carbon</subject><subject>Carbon black</subject><subject>Chemical synthesis</subject><subject>Diamonds</subject><subject>Diffraction patterns</subject><subject>Electron diffraction</subject><subject>Isothermal annealing</subject><subject>Neutron diffraction</subject><subject>Neutrons</subject><subject>nonstoichiometry</subject><subject>Vacancies</subject><subject>vacancy ordering</subject><subject>Zirconium</subject><subject>Zirconium carbide</subject><subject>Zirconium hydrides</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQgIMoWFcv_oKCN6Hr5NWmx6WsLxa86DmkeUjKblNT67L-erPWs3MZhvlmhvkQusawxCnuOqXtEpd1yU5QhjnHBalxeYoyACBFJQico4tx7FKJa8EyRBsV29DnX0qrXh_yEI2Nvn_PfZ9_-6hD76ddrhPkjc2HsE_tS3Tm1Ha0V395gd7u16_NY7F5eXhqVptCM6CscExTEA5TYSm4suLOkFpgWlY1aZUxQLgWFQiiBLcAzLTaslKLllLHlaF0gW7mvUMMH5MdP2UXptink5JQnh5gjJNE3c6UjmEco3VyiH6n4kFikEcp8ihF_kpJMJ7hvd_awz-kfF4163nmB8RnYqc</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Zhou, Yue</creator><creator>Heitmann, Thomas W.</creator><creator>Bohannan, Eric</creator><creator>Schaeperkoetter, Joseph C.</creator><creator>Fahrenholtz, William G.</creator><creator>Hilmas, Gregory E.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6901-947X</orcidid><orcidid>https://orcid.org/0000-0002-8497-0092</orcidid></search><sort><creationdate>202004</creationdate><title>Carbon vacancy ordering in zirconium carbide powder</title><author>Zhou, Yue ; Heitmann, Thomas W. ; Bohannan, Eric ; Schaeperkoetter, Joseph C. ; Fahrenholtz, William G. ; Hilmas, Gregory E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4034-f4c308f138e30f675fd298136792badd025c87082a85e004dbce46c8b33f5ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>Carbon black</topic><topic>Chemical synthesis</topic><topic>Diamonds</topic><topic>Diffraction patterns</topic><topic>Electron diffraction</topic><topic>Isothermal annealing</topic><topic>Neutron diffraction</topic><topic>Neutrons</topic><topic>nonstoichiometry</topic><topic>Vacancies</topic><topic>vacancy ordering</topic><topic>Zirconium</topic><topic>Zirconium carbide</topic><topic>Zirconium hydrides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Heitmann, Thomas W.</creatorcontrib><creatorcontrib>Bohannan, Eric</creatorcontrib><creatorcontrib>Schaeperkoetter, Joseph C.</creatorcontrib><creatorcontrib>Fahrenholtz, William G.</creatorcontrib><creatorcontrib>Hilmas, Gregory E.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yue</au><au>Heitmann, Thomas W.</au><au>Bohannan, Eric</au><au>Schaeperkoetter, Joseph C.</au><au>Fahrenholtz, William G.</au><au>Hilmas, Gregory E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon vacancy ordering in zirconium carbide powder</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2020-04</date><risdate>2020</risdate><volume>103</volume><issue>4</issue><spage>2891</spage><epage>2898</epage><pages>2891-2898</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Ordered carbon vacancies were detected in zirconium carbide (ZrCx) powders that were synthesized by direct reaction. Zirconium hydride (ZrH2) and carbon black were used as starting powders with the molar ratio of ZrH2:C = 1:0.6. Powders were reacted at 1300°C or 2000°C. The major phase detected by x‐ray diffraction (XRD) was ZrCx. No excess carbon was observed by transmission electron microscopy (TEM) in powders synthesized at either temperature. Ordering of the carbon vacancies was identified by neutron powder diffraction (NPD) and further supported by selected area electron diffraction (SAED). The vacancies in carbon‐deficient ZrCx exhibited diamond cubic symmetry with a supercell that consisted of eight (2 × 2 × 2) ZrCx unit cells with the rock‐salt structure. Rietveld refinement of the neutron diffraction patterns revealed that the synthesis temperature did not have a significant effect on the degree of vacancy ordering in ZrCx powders. Direct synthesis of ZrC0.6 resulted in the partial ordering of carbon vacancies without the need for extended isothermal annealing as reported in previous experimental studies.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.16964</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6901-947X</orcidid><orcidid>https://orcid.org/0000-0002-8497-0092</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2020-04, Vol.103 (4), p.2891-2898 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2350194452 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Carbon Carbon black Chemical synthesis Diamonds Diffraction patterns Electron diffraction Isothermal annealing Neutron diffraction Neutrons nonstoichiometry Vacancies vacancy ordering Zirconium Zirconium carbide Zirconium hydrides |
title | Carbon vacancy ordering in zirconium carbide powder |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20vacancy%20ordering%20in%20zirconium%20carbide%20powder&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Zhou,%20Yue&rft.date=2020-04&rft.volume=103&rft.issue=4&rft.spage=2891&rft.epage=2898&rft.pages=2891-2898&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.16964&rft_dat=%3Cproquest_cross%3E2350194452%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4034-f4c308f138e30f675fd298136792badd025c87082a85e004dbce46c8b33f5ad33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350194452&rft_id=info:pmid/&rfr_iscdi=true |