Loading…

Carbon vacancy ordering in zirconium carbide powder

Ordered carbon vacancies were detected in zirconium carbide (ZrCx) powders that were synthesized by direct reaction. Zirconium hydride (ZrH2) and carbon black were used as starting powders with the molar ratio of ZrH2:C = 1:0.6. Powders were reacted at 1300°C or 2000°C. The major phase detected by x...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2020-04, Vol.103 (4), p.2891-2898
Main Authors: Zhou, Yue, Heitmann, Thomas W., Bohannan, Eric, Schaeperkoetter, Joseph C., Fahrenholtz, William G., Hilmas, Gregory E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4034-f4c308f138e30f675fd298136792badd025c87082a85e004dbce46c8b33f5ad33
cites cdi_FETCH-LOGICAL-c4034-f4c308f138e30f675fd298136792badd025c87082a85e004dbce46c8b33f5ad33
container_end_page 2898
container_issue 4
container_start_page 2891
container_title Journal of the American Ceramic Society
container_volume 103
creator Zhou, Yue
Heitmann, Thomas W.
Bohannan, Eric
Schaeperkoetter, Joseph C.
Fahrenholtz, William G.
Hilmas, Gregory E.
description Ordered carbon vacancies were detected in zirconium carbide (ZrCx) powders that were synthesized by direct reaction. Zirconium hydride (ZrH2) and carbon black were used as starting powders with the molar ratio of ZrH2:C = 1:0.6. Powders were reacted at 1300°C or 2000°C. The major phase detected by x‐ray diffraction (XRD) was ZrCx. No excess carbon was observed by transmission electron microscopy (TEM) in powders synthesized at either temperature. Ordering of the carbon vacancies was identified by neutron powder diffraction (NPD) and further supported by selected area electron diffraction (SAED). The vacancies in carbon‐deficient ZrCx exhibited diamond cubic symmetry with a supercell that consisted of eight (2 × 2 × 2) ZrCx unit cells with the rock‐salt structure. Rietveld refinement of the neutron diffraction patterns revealed that the synthesis temperature did not have a significant effect on the degree of vacancy ordering in ZrCx powders. Direct synthesis of ZrC0.6 resulted in the partial ordering of carbon vacancies without the need for extended isothermal annealing as reported in previous experimental studies.
doi_str_mv 10.1111/jace.16964
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350194452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350194452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4034-f4c308f138e30f675fd298136792badd025c87082a85e004dbce46c8b33f5ad33</originalsourceid><addsrcrecordid>eNp9kEtLxDAQgIMoWFcv_oKCN6Hr5NWmx6WsLxa86DmkeUjKblNT67L-erPWs3MZhvlmhvkQusawxCnuOqXtEpd1yU5QhjnHBalxeYoyACBFJQico4tx7FKJa8EyRBsV29DnX0qrXh_yEI2Nvn_PfZ9_-6hD76ddrhPkjc2HsE_tS3Tm1Ha0V395gd7u16_NY7F5eXhqVptCM6CscExTEA5TYSm4suLOkFpgWlY1aZUxQLgWFQiiBLcAzLTaslKLllLHlaF0gW7mvUMMH5MdP2UXptink5JQnh5gjJNE3c6UjmEco3VyiH6n4kFikEcp8ihF_kpJMJ7hvd_awz-kfF4163nmB8RnYqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350194452</pqid></control><display><type>article</type><title>Carbon vacancy ordering in zirconium carbide powder</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhou, Yue ; Heitmann, Thomas W. ; Bohannan, Eric ; Schaeperkoetter, Joseph C. ; Fahrenholtz, William G. ; Hilmas, Gregory E.</creator><creatorcontrib>Zhou, Yue ; Heitmann, Thomas W. ; Bohannan, Eric ; Schaeperkoetter, Joseph C. ; Fahrenholtz, William G. ; Hilmas, Gregory E.</creatorcontrib><description>Ordered carbon vacancies were detected in zirconium carbide (ZrCx) powders that were synthesized by direct reaction. Zirconium hydride (ZrH2) and carbon black were used as starting powders with the molar ratio of ZrH2:C = 1:0.6. Powders were reacted at 1300°C or 2000°C. The major phase detected by x‐ray diffraction (XRD) was ZrCx. No excess carbon was observed by transmission electron microscopy (TEM) in powders synthesized at either temperature. Ordering of the carbon vacancies was identified by neutron powder diffraction (NPD) and further supported by selected area electron diffraction (SAED). The vacancies in carbon‐deficient ZrCx exhibited diamond cubic symmetry with a supercell that consisted of eight (2 × 2 × 2) ZrCx unit cells with the rock‐salt structure. Rietveld refinement of the neutron diffraction patterns revealed that the synthesis temperature did not have a significant effect on the degree of vacancy ordering in ZrCx powders. Direct synthesis of ZrC0.6 resulted in the partial ordering of carbon vacancies without the need for extended isothermal annealing as reported in previous experimental studies.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.16964</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Carbon black ; Chemical synthesis ; Diamonds ; Diffraction patterns ; Electron diffraction ; Isothermal annealing ; Neutron diffraction ; Neutrons ; nonstoichiometry ; Vacancies ; vacancy ordering ; Zirconium ; Zirconium carbide ; Zirconium hydrides</subject><ispartof>Journal of the American Ceramic Society, 2020-04, Vol.103 (4), p.2891-2898</ispartof><rights>2019 The American Ceramic Society</rights><rights>2020 American Ceramic Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4034-f4c308f138e30f675fd298136792badd025c87082a85e004dbce46c8b33f5ad33</citedby><cites>FETCH-LOGICAL-c4034-f4c308f138e30f675fd298136792badd025c87082a85e004dbce46c8b33f5ad33</cites><orcidid>0000-0001-6901-947X ; 0000-0002-8497-0092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Heitmann, Thomas W.</creatorcontrib><creatorcontrib>Bohannan, Eric</creatorcontrib><creatorcontrib>Schaeperkoetter, Joseph C.</creatorcontrib><creatorcontrib>Fahrenholtz, William G.</creatorcontrib><creatorcontrib>Hilmas, Gregory E.</creatorcontrib><title>Carbon vacancy ordering in zirconium carbide powder</title><title>Journal of the American Ceramic Society</title><description>Ordered carbon vacancies were detected in zirconium carbide (ZrCx) powders that were synthesized by direct reaction. Zirconium hydride (ZrH2) and carbon black were used as starting powders with the molar ratio of ZrH2:C = 1:0.6. Powders were reacted at 1300°C or 2000°C. The major phase detected by x‐ray diffraction (XRD) was ZrCx. No excess carbon was observed by transmission electron microscopy (TEM) in powders synthesized at either temperature. Ordering of the carbon vacancies was identified by neutron powder diffraction (NPD) and further supported by selected area electron diffraction (SAED). The vacancies in carbon‐deficient ZrCx exhibited diamond cubic symmetry with a supercell that consisted of eight (2 × 2 × 2) ZrCx unit cells with the rock‐salt structure. Rietveld refinement of the neutron diffraction patterns revealed that the synthesis temperature did not have a significant effect on the degree of vacancy ordering in ZrCx powders. Direct synthesis of ZrC0.6 resulted in the partial ordering of carbon vacancies without the need for extended isothermal annealing as reported in previous experimental studies.</description><subject>Carbon</subject><subject>Carbon black</subject><subject>Chemical synthesis</subject><subject>Diamonds</subject><subject>Diffraction patterns</subject><subject>Electron diffraction</subject><subject>Isothermal annealing</subject><subject>Neutron diffraction</subject><subject>Neutrons</subject><subject>nonstoichiometry</subject><subject>Vacancies</subject><subject>vacancy ordering</subject><subject>Zirconium</subject><subject>Zirconium carbide</subject><subject>Zirconium hydrides</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQgIMoWFcv_oKCN6Hr5NWmx6WsLxa86DmkeUjKblNT67L-erPWs3MZhvlmhvkQusawxCnuOqXtEpd1yU5QhjnHBalxeYoyACBFJQico4tx7FKJa8EyRBsV29DnX0qrXh_yEI2Nvn_PfZ9_-6hD76ddrhPkjc2HsE_tS3Tm1Ha0V395gd7u16_NY7F5eXhqVptCM6CscExTEA5TYSm4suLOkFpgWlY1aZUxQLgWFQiiBLcAzLTaslKLllLHlaF0gW7mvUMMH5MdP2UXptink5JQnh5gjJNE3c6UjmEco3VyiH6n4kFikEcp8ihF_kpJMJ7hvd_awz-kfF4163nmB8RnYqc</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Zhou, Yue</creator><creator>Heitmann, Thomas W.</creator><creator>Bohannan, Eric</creator><creator>Schaeperkoetter, Joseph C.</creator><creator>Fahrenholtz, William G.</creator><creator>Hilmas, Gregory E.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6901-947X</orcidid><orcidid>https://orcid.org/0000-0002-8497-0092</orcidid></search><sort><creationdate>202004</creationdate><title>Carbon vacancy ordering in zirconium carbide powder</title><author>Zhou, Yue ; Heitmann, Thomas W. ; Bohannan, Eric ; Schaeperkoetter, Joseph C. ; Fahrenholtz, William G. ; Hilmas, Gregory E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4034-f4c308f138e30f675fd298136792badd025c87082a85e004dbce46c8b33f5ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>Carbon black</topic><topic>Chemical synthesis</topic><topic>Diamonds</topic><topic>Diffraction patterns</topic><topic>Electron diffraction</topic><topic>Isothermal annealing</topic><topic>Neutron diffraction</topic><topic>Neutrons</topic><topic>nonstoichiometry</topic><topic>Vacancies</topic><topic>vacancy ordering</topic><topic>Zirconium</topic><topic>Zirconium carbide</topic><topic>Zirconium hydrides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Heitmann, Thomas W.</creatorcontrib><creatorcontrib>Bohannan, Eric</creatorcontrib><creatorcontrib>Schaeperkoetter, Joseph C.</creatorcontrib><creatorcontrib>Fahrenholtz, William G.</creatorcontrib><creatorcontrib>Hilmas, Gregory E.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yue</au><au>Heitmann, Thomas W.</au><au>Bohannan, Eric</au><au>Schaeperkoetter, Joseph C.</au><au>Fahrenholtz, William G.</au><au>Hilmas, Gregory E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon vacancy ordering in zirconium carbide powder</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2020-04</date><risdate>2020</risdate><volume>103</volume><issue>4</issue><spage>2891</spage><epage>2898</epage><pages>2891-2898</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Ordered carbon vacancies were detected in zirconium carbide (ZrCx) powders that were synthesized by direct reaction. Zirconium hydride (ZrH2) and carbon black were used as starting powders with the molar ratio of ZrH2:C = 1:0.6. Powders were reacted at 1300°C or 2000°C. The major phase detected by x‐ray diffraction (XRD) was ZrCx. No excess carbon was observed by transmission electron microscopy (TEM) in powders synthesized at either temperature. Ordering of the carbon vacancies was identified by neutron powder diffraction (NPD) and further supported by selected area electron diffraction (SAED). The vacancies in carbon‐deficient ZrCx exhibited diamond cubic symmetry with a supercell that consisted of eight (2 × 2 × 2) ZrCx unit cells with the rock‐salt structure. Rietveld refinement of the neutron diffraction patterns revealed that the synthesis temperature did not have a significant effect on the degree of vacancy ordering in ZrCx powders. Direct synthesis of ZrC0.6 resulted in the partial ordering of carbon vacancies without the need for extended isothermal annealing as reported in previous experimental studies.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.16964</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6901-947X</orcidid><orcidid>https://orcid.org/0000-0002-8497-0092</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2020-04, Vol.103 (4), p.2891-2898
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2350194452
source Wiley-Blackwell Read & Publish Collection
subjects Carbon
Carbon black
Chemical synthesis
Diamonds
Diffraction patterns
Electron diffraction
Isothermal annealing
Neutron diffraction
Neutrons
nonstoichiometry
Vacancies
vacancy ordering
Zirconium
Zirconium carbide
Zirconium hydrides
title Carbon vacancy ordering in zirconium carbide powder
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20vacancy%20ordering%20in%20zirconium%20carbide%20powder&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Zhou,%20Yue&rft.date=2020-04&rft.volume=103&rft.issue=4&rft.spage=2891&rft.epage=2898&rft.pages=2891-2898&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.16964&rft_dat=%3Cproquest_cross%3E2350194452%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4034-f4c308f138e30f675fd298136792badd025c87082a85e004dbce46c8b33f5ad33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350194452&rft_id=info:pmid/&rfr_iscdi=true