Loading…

Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling

Solid‐state lithium batteries are widely considered as next‐generation lithium‐ion battery technology due to the potential advantages in safety and performance. Among the various solid electrolyte materials, Li–garnet electrolytes are promising due to their high ionic conductivity and good chemical...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2020-02, Vol.30 (6), p.n/a
Main Authors: Zheng, Hongpeng, Wu, Shaoping, Tian, Ran, Xu, Zhenming, Zhu, Hong, Duan, Huanan, Liu, Hezhou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3569-3c1aaa8af91d48886c902a0bffbd41e4452c92303226f1c8a31a42ef664ddc3d3
cites cdi_FETCH-LOGICAL-c3569-3c1aaa8af91d48886c902a0bffbd41e4452c92303226f1c8a31a42ef664ddc3d3
container_end_page n/a
container_issue 6
container_start_page
container_title Advanced functional materials
container_volume 30
creator Zheng, Hongpeng
Wu, Shaoping
Tian, Ran
Xu, Zhenming
Zhu, Hong
Duan, Huanan
Liu, Hezhou
description Solid‐state lithium batteries are widely considered as next‐generation lithium‐ion battery technology due to the potential advantages in safety and performance. Among the various solid electrolyte materials, Li–garnet electrolytes are promising due to their high ionic conductivity and good chemical and electrochemical stabilities. However, the high electrode/electrolyte interfacial impedance is one of the major challenges. Moreover, short circuiting caused by lithium dendrite formation is reported when using Li–garnet electrolytes. Here, it is demonstrated that Li–garnet electrolytes wet well with lithium metal by removing the intrinsic impurity layer on the surface of the lithium metal. The Li/garnet interfacial impedance is determined to be 6.95 Ω cm2 at room temperature. Lithium symmetric cells based on the Li–garnet electrolytes are cycled at room temperature for 950 h and current density as high as 13.3 mA cm−2 without showing signs of short circuiting. Experimental and computational results reveal that it is the surface oxide layer on the lithium metal together with the garnet surface that majorly determines the Li/garnet interfacial property. These findings suggest that removing the superficial impurity layer on the lithium metal can enhance the wettability, which may impact the manufacturing process of future high energy density garnet‐based solid‐state lithium batteries. By removing the impurity layer on the surface of the lithium metal, Li–garnet electrolytes are demonstrated to well wet the lithium metal, rendering a Li/garnet interfacial impedance of 6.95 Ω cm2, stable galvanostatic cycling for 950 h, and a current density as high as 13.3 mA cm−2 without showing any sign of short circuiting at room temperature.
doi_str_mv 10.1002/adfm.201906189
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350913817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350913817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3569-3c1aaa8af91d48886c902a0bffbd41e4452c92303226f1c8a31a42ef664ddc3d3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wOuW3OTaZosS-0fVARREDchzSRtynSmJikyuz6C4Bv2SZwyUpeu7uXe850DB6FbwF3AmNyrzG66BIPADLg4Qy1gwDoUE35-2uHtEl2FsMYY-n2attD7rIjeFcHpZO7iypXblcuddrFKSlufDvvvifKFickoNzr6Mq-iCcmoUIvcFctk6parw_7rWUXTGOw2ybDSx981urAqD-bmd7bR63j0Mpx25k-T2XAw72jaY6JDNSiluLICspRzzrTAROGFtYssBZOmPaIFoZgSwixoriiolBjLWJplmma0je4a360vP3YmRLkud76oIyWhPSyAcujXqm6j0r4MwRsrt95tlK8kYHnsTx77k6f-akA0wKfLTfWPWg4exo9_7A9qvXbq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350913817</pqid></control><display><type>article</type><title>Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zheng, Hongpeng ; Wu, Shaoping ; Tian, Ran ; Xu, Zhenming ; Zhu, Hong ; Duan, Huanan ; Liu, Hezhou</creator><creatorcontrib>Zheng, Hongpeng ; Wu, Shaoping ; Tian, Ran ; Xu, Zhenming ; Zhu, Hong ; Duan, Huanan ; Liu, Hezhou</creatorcontrib><description>Solid‐state lithium batteries are widely considered as next‐generation lithium‐ion battery technology due to the potential advantages in safety and performance. Among the various solid electrolyte materials, Li–garnet electrolytes are promising due to their high ionic conductivity and good chemical and electrochemical stabilities. However, the high electrode/electrolyte interfacial impedance is one of the major challenges. Moreover, short circuiting caused by lithium dendrite formation is reported when using Li–garnet electrolytes. Here, it is demonstrated that Li–garnet electrolytes wet well with lithium metal by removing the intrinsic impurity layer on the surface of the lithium metal. The Li/garnet interfacial impedance is determined to be 6.95 Ω cm2 at room temperature. Lithium symmetric cells based on the Li–garnet electrolytes are cycled at room temperature for 950 h and current density as high as 13.3 mA cm−2 without showing signs of short circuiting. Experimental and computational results reveal that it is the surface oxide layer on the lithium metal together with the garnet surface that majorly determines the Li/garnet interfacial property. These findings suggest that removing the superficial impurity layer on the lithium metal can enhance the wettability, which may impact the manufacturing process of future high energy density garnet‐based solid‐state lithium batteries. By removing the impurity layer on the surface of the lithium metal, Li–garnet electrolytes are demonstrated to well wet the lithium metal, rendering a Li/garnet interfacial impedance of 6.95 Ω cm2, stable galvanostatic cycling for 950 h, and a current density as high as 13.3 mA cm−2 without showing any sign of short circuiting at room temperature.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201906189</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>critical current density ; Dendritic structure ; Electrolytes ; Electrolytic cells ; Flux density ; Impedance ; Impurities ; interface ; Interfacial properties ; Ion currents ; Lithium ; Lithium batteries ; Lithium-ion batteries ; lithium–garnet ; Materials science ; Organic chemistry ; Product safety ; Room temperature ; solid electrolyte ; Solid electrolytes ; solid‐state lithium batteries ; Wettability</subject><ispartof>Advanced functional materials, 2020-02, Vol.30 (6), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3569-3c1aaa8af91d48886c902a0bffbd41e4452c92303226f1c8a31a42ef664ddc3d3</citedby><cites>FETCH-LOGICAL-c3569-3c1aaa8af91d48886c902a0bffbd41e4452c92303226f1c8a31a42ef664ddc3d3</cites><orcidid>0000-0003-3052-3905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zheng, Hongpeng</creatorcontrib><creatorcontrib>Wu, Shaoping</creatorcontrib><creatorcontrib>Tian, Ran</creatorcontrib><creatorcontrib>Xu, Zhenming</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Duan, Huanan</creatorcontrib><creatorcontrib>Liu, Hezhou</creatorcontrib><title>Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling</title><title>Advanced functional materials</title><description>Solid‐state lithium batteries are widely considered as next‐generation lithium‐ion battery technology due to the potential advantages in safety and performance. Among the various solid electrolyte materials, Li–garnet electrolytes are promising due to their high ionic conductivity and good chemical and electrochemical stabilities. However, the high electrode/electrolyte interfacial impedance is one of the major challenges. Moreover, short circuiting caused by lithium dendrite formation is reported when using Li–garnet electrolytes. Here, it is demonstrated that Li–garnet electrolytes wet well with lithium metal by removing the intrinsic impurity layer on the surface of the lithium metal. The Li/garnet interfacial impedance is determined to be 6.95 Ω cm2 at room temperature. Lithium symmetric cells based on the Li–garnet electrolytes are cycled at room temperature for 950 h and current density as high as 13.3 mA cm−2 without showing signs of short circuiting. Experimental and computational results reveal that it is the surface oxide layer on the lithium metal together with the garnet surface that majorly determines the Li/garnet interfacial property. These findings suggest that removing the superficial impurity layer on the lithium metal can enhance the wettability, which may impact the manufacturing process of future high energy density garnet‐based solid‐state lithium batteries. By removing the impurity layer on the surface of the lithium metal, Li–garnet electrolytes are demonstrated to well wet the lithium metal, rendering a Li/garnet interfacial impedance of 6.95 Ω cm2, stable galvanostatic cycling for 950 h, and a current density as high as 13.3 mA cm−2 without showing any sign of short circuiting at room temperature.</description><subject>critical current density</subject><subject>Dendritic structure</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Flux density</subject><subject>Impedance</subject><subject>Impurities</subject><subject>interface</subject><subject>Interfacial properties</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>lithium–garnet</subject><subject>Materials science</subject><subject>Organic chemistry</subject><subject>Product safety</subject><subject>Room temperature</subject><subject>solid electrolyte</subject><subject>Solid electrolytes</subject><subject>solid‐state lithium batteries</subject><subject>Wettability</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wOuW3OTaZosS-0fVARREDchzSRtynSmJikyuz6C4Bv2SZwyUpeu7uXe850DB6FbwF3AmNyrzG66BIPADLg4Qy1gwDoUE35-2uHtEl2FsMYY-n2attD7rIjeFcHpZO7iypXblcuddrFKSlufDvvvifKFickoNzr6Mq-iCcmoUIvcFctk6parw_7rWUXTGOw2ybDSx981urAqD-bmd7bR63j0Mpx25k-T2XAw72jaY6JDNSiluLICspRzzrTAROGFtYssBZOmPaIFoZgSwixoriiolBjLWJplmma0je4a360vP3YmRLkud76oIyWhPSyAcujXqm6j0r4MwRsrt95tlK8kYHnsTx77k6f-akA0wKfLTfWPWg4exo9_7A9qvXbq</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Zheng, Hongpeng</creator><creator>Wu, Shaoping</creator><creator>Tian, Ran</creator><creator>Xu, Zhenming</creator><creator>Zhu, Hong</creator><creator>Duan, Huanan</creator><creator>Liu, Hezhou</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3052-3905</orcidid></search><sort><creationdate>20200201</creationdate><title>Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling</title><author>Zheng, Hongpeng ; Wu, Shaoping ; Tian, Ran ; Xu, Zhenming ; Zhu, Hong ; Duan, Huanan ; Liu, Hezhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3569-3c1aaa8af91d48886c902a0bffbd41e4452c92303226f1c8a31a42ef664ddc3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>critical current density</topic><topic>Dendritic structure</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Flux density</topic><topic>Impedance</topic><topic>Impurities</topic><topic>interface</topic><topic>Interfacial properties</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>lithium–garnet</topic><topic>Materials science</topic><topic>Organic chemistry</topic><topic>Product safety</topic><topic>Room temperature</topic><topic>solid electrolyte</topic><topic>Solid electrolytes</topic><topic>solid‐state lithium batteries</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hongpeng</creatorcontrib><creatorcontrib>Wu, Shaoping</creatorcontrib><creatorcontrib>Tian, Ran</creatorcontrib><creatorcontrib>Xu, Zhenming</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Duan, Huanan</creatorcontrib><creatorcontrib>Liu, Hezhou</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Hongpeng</au><au>Wu, Shaoping</au><au>Tian, Ran</au><au>Xu, Zhenming</au><au>Zhu, Hong</au><au>Duan, Huanan</au><au>Liu, Hezhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling</atitle><jtitle>Advanced functional materials</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Solid‐state lithium batteries are widely considered as next‐generation lithium‐ion battery technology due to the potential advantages in safety and performance. Among the various solid electrolyte materials, Li–garnet electrolytes are promising due to their high ionic conductivity and good chemical and electrochemical stabilities. However, the high electrode/electrolyte interfacial impedance is one of the major challenges. Moreover, short circuiting caused by lithium dendrite formation is reported when using Li–garnet electrolytes. Here, it is demonstrated that Li–garnet electrolytes wet well with lithium metal by removing the intrinsic impurity layer on the surface of the lithium metal. The Li/garnet interfacial impedance is determined to be 6.95 Ω cm2 at room temperature. Lithium symmetric cells based on the Li–garnet electrolytes are cycled at room temperature for 950 h and current density as high as 13.3 mA cm−2 without showing signs of short circuiting. Experimental and computational results reveal that it is the surface oxide layer on the lithium metal together with the garnet surface that majorly determines the Li/garnet interfacial property. These findings suggest that removing the superficial impurity layer on the lithium metal can enhance the wettability, which may impact the manufacturing process of future high energy density garnet‐based solid‐state lithium batteries. By removing the impurity layer on the surface of the lithium metal, Li–garnet electrolytes are demonstrated to well wet the lithium metal, rendering a Li/garnet interfacial impedance of 6.95 Ω cm2, stable galvanostatic cycling for 950 h, and a current density as high as 13.3 mA cm−2 without showing any sign of short circuiting at room temperature.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201906189</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3052-3905</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-02, Vol.30 (6), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2350913817
source Wiley-Blackwell Read & Publish Collection
subjects critical current density
Dendritic structure
Electrolytes
Electrolytic cells
Flux density
Impedance
Impurities
interface
Interfacial properties
Ion currents
Lithium
Lithium batteries
Lithium-ion batteries
lithium–garnet
Materials science
Organic chemistry
Product safety
Room temperature
solid electrolyte
Solid electrolytes
solid‐state lithium batteries
Wettability
title Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Lithiophilicity%20of%20Li%E2%80%93Garnet%20Electrolytes%20Enabling%20High%E2%80%90Rate%20Lithium%20Cycling&rft.jtitle=Advanced%20functional%20materials&rft.au=Zheng,%20Hongpeng&rft.date=2020-02-01&rft.volume=30&rft.issue=6&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201906189&rft_dat=%3Cproquest_cross%3E2350913817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3569-3c1aaa8af91d48886c902a0bffbd41e4452c92303226f1c8a31a42ef664ddc3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350913817&rft_id=info:pmid/&rfr_iscdi=true