Loading…
Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling
Solid‐state lithium batteries are widely considered as next‐generation lithium‐ion battery technology due to the potential advantages in safety and performance. Among the various solid electrolyte materials, Li–garnet electrolytes are promising due to their high ionic conductivity and good chemical...
Saved in:
Published in: | Advanced functional materials 2020-02, Vol.30 (6), p.n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3569-3c1aaa8af91d48886c902a0bffbd41e4452c92303226f1c8a31a42ef664ddc3d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3569-3c1aaa8af91d48886c902a0bffbd41e4452c92303226f1c8a31a42ef664ddc3d3 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Zheng, Hongpeng Wu, Shaoping Tian, Ran Xu, Zhenming Zhu, Hong Duan, Huanan Liu, Hezhou |
description | Solid‐state lithium batteries are widely considered as next‐generation lithium‐ion battery technology due to the potential advantages in safety and performance. Among the various solid electrolyte materials, Li–garnet electrolytes are promising due to their high ionic conductivity and good chemical and electrochemical stabilities. However, the high electrode/electrolyte interfacial impedance is one of the major challenges. Moreover, short circuiting caused by lithium dendrite formation is reported when using Li–garnet electrolytes. Here, it is demonstrated that Li–garnet electrolytes wet well with lithium metal by removing the intrinsic impurity layer on the surface of the lithium metal. The Li/garnet interfacial impedance is determined to be 6.95 Ω cm2 at room temperature. Lithium symmetric cells based on the Li–garnet electrolytes are cycled at room temperature for 950 h and current density as high as 13.3 mA cm−2 without showing signs of short circuiting. Experimental and computational results reveal that it is the surface oxide layer on the lithium metal together with the garnet surface that majorly determines the Li/garnet interfacial property. These findings suggest that removing the superficial impurity layer on the lithium metal can enhance the wettability, which may impact the manufacturing process of future high energy density garnet‐based solid‐state lithium batteries.
By removing the impurity layer on the surface of the lithium metal, Li–garnet electrolytes are demonstrated to well wet the lithium metal, rendering a Li/garnet interfacial impedance of 6.95 Ω cm2, stable galvanostatic cycling for 950 h, and a current density as high as 13.3 mA cm−2 without showing any sign of short circuiting at room temperature. |
doi_str_mv | 10.1002/adfm.201906189 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350913817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350913817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3569-3c1aaa8af91d48886c902a0bffbd41e4452c92303226f1c8a31a42ef664ddc3d3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wOuW3OTaZosS-0fVARREDchzSRtynSmJikyuz6C4Bv2SZwyUpeu7uXe850DB6FbwF3AmNyrzG66BIPADLg4Qy1gwDoUE35-2uHtEl2FsMYY-n2attD7rIjeFcHpZO7iypXblcuddrFKSlufDvvvifKFickoNzr6Mq-iCcmoUIvcFctk6parw_7rWUXTGOw2ybDSx981urAqD-bmd7bR63j0Mpx25k-T2XAw72jaY6JDNSiluLICspRzzrTAROGFtYssBZOmPaIFoZgSwixoriiolBjLWJplmma0je4a360vP3YmRLkud76oIyWhPSyAcujXqm6j0r4MwRsrt95tlK8kYHnsTx77k6f-akA0wKfLTfWPWg4exo9_7A9qvXbq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350913817</pqid></control><display><type>article</type><title>Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zheng, Hongpeng ; Wu, Shaoping ; Tian, Ran ; Xu, Zhenming ; Zhu, Hong ; Duan, Huanan ; Liu, Hezhou</creator><creatorcontrib>Zheng, Hongpeng ; Wu, Shaoping ; Tian, Ran ; Xu, Zhenming ; Zhu, Hong ; Duan, Huanan ; Liu, Hezhou</creatorcontrib><description>Solid‐state lithium batteries are widely considered as next‐generation lithium‐ion battery technology due to the potential advantages in safety and performance. Among the various solid electrolyte materials, Li–garnet electrolytes are promising due to their high ionic conductivity and good chemical and electrochemical stabilities. However, the high electrode/electrolyte interfacial impedance is one of the major challenges. Moreover, short circuiting caused by lithium dendrite formation is reported when using Li–garnet electrolytes. Here, it is demonstrated that Li–garnet electrolytes wet well with lithium metal by removing the intrinsic impurity layer on the surface of the lithium metal. The Li/garnet interfacial impedance is determined to be 6.95 Ω cm2 at room temperature. Lithium symmetric cells based on the Li–garnet electrolytes are cycled at room temperature for 950 h and current density as high as 13.3 mA cm−2 without showing signs of short circuiting. Experimental and computational results reveal that it is the surface oxide layer on the lithium metal together with the garnet surface that majorly determines the Li/garnet interfacial property. These findings suggest that removing the superficial impurity layer on the lithium metal can enhance the wettability, which may impact the manufacturing process of future high energy density garnet‐based solid‐state lithium batteries.
By removing the impurity layer on the surface of the lithium metal, Li–garnet electrolytes are demonstrated to well wet the lithium metal, rendering a Li/garnet interfacial impedance of 6.95 Ω cm2, stable galvanostatic cycling for 950 h, and a current density as high as 13.3 mA cm−2 without showing any sign of short circuiting at room temperature.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201906189</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>critical current density ; Dendritic structure ; Electrolytes ; Electrolytic cells ; Flux density ; Impedance ; Impurities ; interface ; Interfacial properties ; Ion currents ; Lithium ; Lithium batteries ; Lithium-ion batteries ; lithium–garnet ; Materials science ; Organic chemistry ; Product safety ; Room temperature ; solid electrolyte ; Solid electrolytes ; solid‐state lithium batteries ; Wettability</subject><ispartof>Advanced functional materials, 2020-02, Vol.30 (6), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3569-3c1aaa8af91d48886c902a0bffbd41e4452c92303226f1c8a31a42ef664ddc3d3</citedby><cites>FETCH-LOGICAL-c3569-3c1aaa8af91d48886c902a0bffbd41e4452c92303226f1c8a31a42ef664ddc3d3</cites><orcidid>0000-0003-3052-3905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zheng, Hongpeng</creatorcontrib><creatorcontrib>Wu, Shaoping</creatorcontrib><creatorcontrib>Tian, Ran</creatorcontrib><creatorcontrib>Xu, Zhenming</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Duan, Huanan</creatorcontrib><creatorcontrib>Liu, Hezhou</creatorcontrib><title>Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling</title><title>Advanced functional materials</title><description>Solid‐state lithium batteries are widely considered as next‐generation lithium‐ion battery technology due to the potential advantages in safety and performance. Among the various solid electrolyte materials, Li–garnet electrolytes are promising due to their high ionic conductivity and good chemical and electrochemical stabilities. However, the high electrode/electrolyte interfacial impedance is one of the major challenges. Moreover, short circuiting caused by lithium dendrite formation is reported when using Li–garnet electrolytes. Here, it is demonstrated that Li–garnet electrolytes wet well with lithium metal by removing the intrinsic impurity layer on the surface of the lithium metal. The Li/garnet interfacial impedance is determined to be 6.95 Ω cm2 at room temperature. Lithium symmetric cells based on the Li–garnet electrolytes are cycled at room temperature for 950 h and current density as high as 13.3 mA cm−2 without showing signs of short circuiting. Experimental and computational results reveal that it is the surface oxide layer on the lithium metal together with the garnet surface that majorly determines the Li/garnet interfacial property. These findings suggest that removing the superficial impurity layer on the lithium metal can enhance the wettability, which may impact the manufacturing process of future high energy density garnet‐based solid‐state lithium batteries.
By removing the impurity layer on the surface of the lithium metal, Li–garnet electrolytes are demonstrated to well wet the lithium metal, rendering a Li/garnet interfacial impedance of 6.95 Ω cm2, stable galvanostatic cycling for 950 h, and a current density as high as 13.3 mA cm−2 without showing any sign of short circuiting at room temperature.</description><subject>critical current density</subject><subject>Dendritic structure</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Flux density</subject><subject>Impedance</subject><subject>Impurities</subject><subject>interface</subject><subject>Interfacial properties</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>lithium–garnet</subject><subject>Materials science</subject><subject>Organic chemistry</subject><subject>Product safety</subject><subject>Room temperature</subject><subject>solid electrolyte</subject><subject>Solid electrolytes</subject><subject>solid‐state lithium batteries</subject><subject>Wettability</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wOuW3OTaZosS-0fVARREDchzSRtynSmJikyuz6C4Bv2SZwyUpeu7uXe850DB6FbwF3AmNyrzG66BIPADLg4Qy1gwDoUE35-2uHtEl2FsMYY-n2attD7rIjeFcHpZO7iypXblcuddrFKSlufDvvvifKFickoNzr6Mq-iCcmoUIvcFctk6parw_7rWUXTGOw2ybDSx981urAqD-bmd7bR63j0Mpx25k-T2XAw72jaY6JDNSiluLICspRzzrTAROGFtYssBZOmPaIFoZgSwixoriiolBjLWJplmma0je4a360vP3YmRLkud76oIyWhPSyAcujXqm6j0r4MwRsrt95tlK8kYHnsTx77k6f-akA0wKfLTfWPWg4exo9_7A9qvXbq</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Zheng, Hongpeng</creator><creator>Wu, Shaoping</creator><creator>Tian, Ran</creator><creator>Xu, Zhenming</creator><creator>Zhu, Hong</creator><creator>Duan, Huanan</creator><creator>Liu, Hezhou</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3052-3905</orcidid></search><sort><creationdate>20200201</creationdate><title>Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling</title><author>Zheng, Hongpeng ; Wu, Shaoping ; Tian, Ran ; Xu, Zhenming ; Zhu, Hong ; Duan, Huanan ; Liu, Hezhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3569-3c1aaa8af91d48886c902a0bffbd41e4452c92303226f1c8a31a42ef664ddc3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>critical current density</topic><topic>Dendritic structure</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Flux density</topic><topic>Impedance</topic><topic>Impurities</topic><topic>interface</topic><topic>Interfacial properties</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>lithium–garnet</topic><topic>Materials science</topic><topic>Organic chemistry</topic><topic>Product safety</topic><topic>Room temperature</topic><topic>solid electrolyte</topic><topic>Solid electrolytes</topic><topic>solid‐state lithium batteries</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hongpeng</creatorcontrib><creatorcontrib>Wu, Shaoping</creatorcontrib><creatorcontrib>Tian, Ran</creatorcontrib><creatorcontrib>Xu, Zhenming</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Duan, Huanan</creatorcontrib><creatorcontrib>Liu, Hezhou</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Hongpeng</au><au>Wu, Shaoping</au><au>Tian, Ran</au><au>Xu, Zhenming</au><au>Zhu, Hong</au><au>Duan, Huanan</au><au>Liu, Hezhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling</atitle><jtitle>Advanced functional materials</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Solid‐state lithium batteries are widely considered as next‐generation lithium‐ion battery technology due to the potential advantages in safety and performance. Among the various solid electrolyte materials, Li–garnet electrolytes are promising due to their high ionic conductivity and good chemical and electrochemical stabilities. However, the high electrode/electrolyte interfacial impedance is one of the major challenges. Moreover, short circuiting caused by lithium dendrite formation is reported when using Li–garnet electrolytes. Here, it is demonstrated that Li–garnet electrolytes wet well with lithium metal by removing the intrinsic impurity layer on the surface of the lithium metal. The Li/garnet interfacial impedance is determined to be 6.95 Ω cm2 at room temperature. Lithium symmetric cells based on the Li–garnet electrolytes are cycled at room temperature for 950 h and current density as high as 13.3 mA cm−2 without showing signs of short circuiting. Experimental and computational results reveal that it is the surface oxide layer on the lithium metal together with the garnet surface that majorly determines the Li/garnet interfacial property. These findings suggest that removing the superficial impurity layer on the lithium metal can enhance the wettability, which may impact the manufacturing process of future high energy density garnet‐based solid‐state lithium batteries.
By removing the impurity layer on the surface of the lithium metal, Li–garnet electrolytes are demonstrated to well wet the lithium metal, rendering a Li/garnet interfacial impedance of 6.95 Ω cm2, stable galvanostatic cycling for 950 h, and a current density as high as 13.3 mA cm−2 without showing any sign of short circuiting at room temperature.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201906189</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3052-3905</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-02, Vol.30 (6), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2350913817 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | critical current density Dendritic structure Electrolytes Electrolytic cells Flux density Impedance Impurities interface Interfacial properties Ion currents Lithium Lithium batteries Lithium-ion batteries lithium–garnet Materials science Organic chemistry Product safety Room temperature solid electrolyte Solid electrolytes solid‐state lithium batteries Wettability |
title | Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Lithiophilicity%20of%20Li%E2%80%93Garnet%20Electrolytes%20Enabling%20High%E2%80%90Rate%20Lithium%20Cycling&rft.jtitle=Advanced%20functional%20materials&rft.au=Zheng,%20Hongpeng&rft.date=2020-02-01&rft.volume=30&rft.issue=6&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201906189&rft_dat=%3Cproquest_cross%3E2350913817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3569-3c1aaa8af91d48886c902a0bffbd41e4452c92303226f1c8a31a42ef664ddc3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350913817&rft_id=info:pmid/&rfr_iscdi=true |