Loading…

Correlation between unsteady-state solidification thermal parameters and microstructural growth of Zn–8 mass% Al and Zn–8 mass% Al–XBi tribological alloys

In the present study, directionally solidification experiments are performed with Zn–8 mass% Al and Zn–8 mass% Al– X  mass% Bi ( X  = 1.5, 2.3 and 3.0 mass%) alloys using a water-cooled solidification system, which permits a wide range of solidification cooling rates to be investigated in a single e...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2020-02, Vol.139 (3), p.1741-1761
Main Authors: Septimio, Rudimylla S., Costa, Thiago A., Silva, Cássio A. P., Vida, Talita A., de Damborenea, Juan, Garcia, Amauri, Cheung, Noé
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-6851907767557b2dbb0d96f2822765e32e043a6faeb34b6de97fcfe27de074683
cites cdi_FETCH-LOGICAL-c429t-6851907767557b2dbb0d96f2822765e32e043a6faeb34b6de97fcfe27de074683
container_end_page 1761
container_issue 3
container_start_page 1741
container_title Journal of thermal analysis and calorimetry
container_volume 139
creator Septimio, Rudimylla S.
Costa, Thiago A.
Silva, Cássio A. P.
Vida, Talita A.
de Damborenea, Juan
Garcia, Amauri
Cheung, Noé
description In the present study, directionally solidification experiments are performed with Zn–8 mass% Al and Zn–8 mass% Al– X  mass% Bi ( X  = 1.5, 2.3 and 3.0 mass%) alloys using a water-cooled solidification system, which permits a wide range of solidification cooling rates to be investigated in a single experiment. The microstructural phases of the ternary alloys are shown to be quite similar to those of the binary alloy, with equiaxed dendrites immersed in a matrix formed by fibers or lamellae of the Al/Zn eutectoid product, with the difference that the ternary alloys have Bi droplets disseminated into the matrix and dendrite branches. The dendrites, lamellae and fibers evolve from a refined microstructure at regions closer to the water-cooled bottom of the casting, to increasingly coarser microstructures toward the top. Experimental expressions relating the secondary dendritic arm spacing, the spacing between lamellae and the fiber spacing to solidification thermal parameters (growth and cooling rates) are derived. For the alloys having higher Bi content, a bimodal distribution of Bi droplets was shown to occur, with small droplets, consisting of lamellae and fibers, disseminated into the matrix and larger droplets between the dendritic branches.
doi_str_mv 10.1007/s10973-019-08600-2
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2350939879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A613526727</galeid><sourcerecordid>A613526727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-6851907767557b2dbb0d96f2822765e32e043a6faeb34b6de97fcfe27de074683</originalsourceid><addsrcrecordid>eNp9kdFqFTEQhhexYD31BbxaEC-82DpJziaby-OhaqEgVAXxJmR3J9uU7OaYZKnnznfwBXrhk_RR-iSmXUGKILnIZPL9M8P8RfGcwDEBEK8jASlYBURW0HCAij4qDkndNBWVlD_OMcsxJzU8KZ7GeAkAUgI5LH5tfQjodLJ-KltMV4hTOU8xoe73VUw6YRm9s701tluodIFh1K7c6aBHTBhiqae-HG0XfExh7tIc8vcQ_FW6KL0pv063P342N9ejjvHlzfXG3fP_ZPPzyxtbpmBb7_yQ22XQOb-PR8WB0S7isz_3qvj89uTT9n119uHd6XZzVnVrKlPFm5pIEIKLuhYt7dsWeskNbSgVvEZGEdZMc6OxZeuW9yiF6QxS0SOINW_Yqnix1N0F_23GmNSln8OUWyrKapBMNkJm6nihBu1Q2cn4FHSXT495B35CY3N-wwmrKRdUZMGrB4LMJPyeBj3HqE4_nj9k6cLeLTMGNGoX7KjDXhFQd1arxWqVrVb3VufRVgVbRDHD04Dh79z_Uf0GDnWzyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350939879</pqid></control><display><type>article</type><title>Correlation between unsteady-state solidification thermal parameters and microstructural growth of Zn–8 mass% Al and Zn–8 mass% Al–XBi tribological alloys</title><source>Springer Link</source><creator>Septimio, Rudimylla S. ; Costa, Thiago A. ; Silva, Cássio A. P. ; Vida, Talita A. ; de Damborenea, Juan ; Garcia, Amauri ; Cheung, Noé</creator><creatorcontrib>Septimio, Rudimylla S. ; Costa, Thiago A. ; Silva, Cássio A. P. ; Vida, Talita A. ; de Damborenea, Juan ; Garcia, Amauri ; Cheung, Noé</creatorcontrib><description>In the present study, directionally solidification experiments are performed with Zn–8 mass% Al and Zn–8 mass% Al– X  mass% Bi ( X  = 1.5, 2.3 and 3.0 mass%) alloys using a water-cooled solidification system, which permits a wide range of solidification cooling rates to be investigated in a single experiment. The microstructural phases of the ternary alloys are shown to be quite similar to those of the binary alloy, with equiaxed dendrites immersed in a matrix formed by fibers or lamellae of the Al/Zn eutectoid product, with the difference that the ternary alloys have Bi droplets disseminated into the matrix and dendrite branches. The dendrites, lamellae and fibers evolve from a refined microstructure at regions closer to the water-cooled bottom of the casting, to increasingly coarser microstructures toward the top. Experimental expressions relating the secondary dendritic arm spacing, the spacing between lamellae and the fiber spacing to solidification thermal parameters (growth and cooling rates) are derived. For the alloys having higher Bi content, a bimodal distribution of Bi droplets was shown to occur, with small droplets, consisting of lamellae and fibers, disseminated into the matrix and larger droplets between the dendritic branches.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-019-08600-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alloy systems ; Alloys ; Analytical Chemistry ; Binary alloys ; Bottom casting ; Chemistry ; Chemistry and Materials Science ; Cooling rate ; Dendritic structure ; Droplets ; Fibers ; Growth ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Microstructure ; Parameters ; Physical Chemistry ; Polymer Sciences ; Solidification ; Specialty metals industry ; Ternary alloys ; Ternary systems ; Thermal properties ; Thermodynamic properties ; Thermoelectricity ; Tribology ; Zinc ; Zinc compounds</subject><ispartof>Journal of thermal analysis and calorimetry, 2020-02, Vol.139 (3), p.1741-1761</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2019© Akadémiai Kiadó, Budapest, Hungary 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-6851907767557b2dbb0d96f2822765e32e043a6faeb34b6de97fcfe27de074683</citedby><cites>FETCH-LOGICAL-c429t-6851907767557b2dbb0d96f2822765e32e043a6faeb34b6de97fcfe27de074683</cites><orcidid>0000-0003-1120-8926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Septimio, Rudimylla S.</creatorcontrib><creatorcontrib>Costa, Thiago A.</creatorcontrib><creatorcontrib>Silva, Cássio A. P.</creatorcontrib><creatorcontrib>Vida, Talita A.</creatorcontrib><creatorcontrib>de Damborenea, Juan</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><creatorcontrib>Cheung, Noé</creatorcontrib><title>Correlation between unsteady-state solidification thermal parameters and microstructural growth of Zn–8 mass% Al and Zn–8 mass% Al–XBi tribological alloys</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>In the present study, directionally solidification experiments are performed with Zn–8 mass% Al and Zn–8 mass% Al– X  mass% Bi ( X  = 1.5, 2.3 and 3.0 mass%) alloys using a water-cooled solidification system, which permits a wide range of solidification cooling rates to be investigated in a single experiment. The microstructural phases of the ternary alloys are shown to be quite similar to those of the binary alloy, with equiaxed dendrites immersed in a matrix formed by fibers or lamellae of the Al/Zn eutectoid product, with the difference that the ternary alloys have Bi droplets disseminated into the matrix and dendrite branches. The dendrites, lamellae and fibers evolve from a refined microstructure at regions closer to the water-cooled bottom of the casting, to increasingly coarser microstructures toward the top. Experimental expressions relating the secondary dendritic arm spacing, the spacing between lamellae and the fiber spacing to solidification thermal parameters (growth and cooling rates) are derived. For the alloys having higher Bi content, a bimodal distribution of Bi droplets was shown to occur, with small droplets, consisting of lamellae and fibers, disseminated into the matrix and larger droplets between the dendritic branches.</description><subject>Alloy systems</subject><subject>Alloys</subject><subject>Analytical Chemistry</subject><subject>Binary alloys</subject><subject>Bottom casting</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cooling rate</subject><subject>Dendritic structure</subject><subject>Droplets</subject><subject>Fibers</subject><subject>Growth</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Microstructure</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Solidification</subject><subject>Specialty metals industry</subject><subject>Ternary alloys</subject><subject>Ternary systems</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Thermoelectricity</subject><subject>Tribology</subject><subject>Zinc</subject><subject>Zinc compounds</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kdFqFTEQhhexYD31BbxaEC-82DpJziaby-OhaqEgVAXxJmR3J9uU7OaYZKnnznfwBXrhk_RR-iSmXUGKILnIZPL9M8P8RfGcwDEBEK8jASlYBURW0HCAij4qDkndNBWVlD_OMcsxJzU8KZ7GeAkAUgI5LH5tfQjodLJ-KltMV4hTOU8xoe73VUw6YRm9s701tluodIFh1K7c6aBHTBhiqae-HG0XfExh7tIc8vcQ_FW6KL0pv063P342N9ejjvHlzfXG3fP_ZPPzyxtbpmBb7_yQ22XQOb-PR8WB0S7isz_3qvj89uTT9n119uHd6XZzVnVrKlPFm5pIEIKLuhYt7dsWeskNbSgVvEZGEdZMc6OxZeuW9yiF6QxS0SOINW_Yqnix1N0F_23GmNSln8OUWyrKapBMNkJm6nihBu1Q2cn4FHSXT495B35CY3N-wwmrKRdUZMGrB4LMJPyeBj3HqE4_nj9k6cLeLTMGNGoX7KjDXhFQd1arxWqVrVb3VufRVgVbRDHD04Dh79z_Uf0GDnWzyw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Septimio, Rudimylla S.</creator><creator>Costa, Thiago A.</creator><creator>Silva, Cássio A. P.</creator><creator>Vida, Talita A.</creator><creator>de Damborenea, Juan</creator><creator>Garcia, Amauri</creator><creator>Cheung, Noé</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0003-1120-8926</orcidid></search><sort><creationdate>20200201</creationdate><title>Correlation between unsteady-state solidification thermal parameters and microstructural growth of Zn–8 mass% Al and Zn–8 mass% Al–XBi tribological alloys</title><author>Septimio, Rudimylla S. ; Costa, Thiago A. ; Silva, Cássio A. P. ; Vida, Talita A. ; de Damborenea, Juan ; Garcia, Amauri ; Cheung, Noé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-6851907767557b2dbb0d96f2822765e32e043a6faeb34b6de97fcfe27de074683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloy systems</topic><topic>Alloys</topic><topic>Analytical Chemistry</topic><topic>Binary alloys</topic><topic>Bottom casting</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cooling rate</topic><topic>Dendritic structure</topic><topic>Droplets</topic><topic>Fibers</topic><topic>Growth</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Microstructure</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Solidification</topic><topic>Specialty metals industry</topic><topic>Ternary alloys</topic><topic>Ternary systems</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Thermoelectricity</topic><topic>Tribology</topic><topic>Zinc</topic><topic>Zinc compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Septimio, Rudimylla S.</creatorcontrib><creatorcontrib>Costa, Thiago A.</creatorcontrib><creatorcontrib>Silva, Cássio A. P.</creatorcontrib><creatorcontrib>Vida, Talita A.</creatorcontrib><creatorcontrib>de Damborenea, Juan</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><creatorcontrib>Cheung, Noé</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Septimio, Rudimylla S.</au><au>Costa, Thiago A.</au><au>Silva, Cássio A. P.</au><au>Vida, Talita A.</au><au>de Damborenea, Juan</au><au>Garcia, Amauri</au><au>Cheung, Noé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation between unsteady-state solidification thermal parameters and microstructural growth of Zn–8 mass% Al and Zn–8 mass% Al–XBi tribological alloys</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>139</volume><issue>3</issue><spage>1741</spage><epage>1761</epage><pages>1741-1761</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>In the present study, directionally solidification experiments are performed with Zn–8 mass% Al and Zn–8 mass% Al– X  mass% Bi ( X  = 1.5, 2.3 and 3.0 mass%) alloys using a water-cooled solidification system, which permits a wide range of solidification cooling rates to be investigated in a single experiment. The microstructural phases of the ternary alloys are shown to be quite similar to those of the binary alloy, with equiaxed dendrites immersed in a matrix formed by fibers or lamellae of the Al/Zn eutectoid product, with the difference that the ternary alloys have Bi droplets disseminated into the matrix and dendrite branches. The dendrites, lamellae and fibers evolve from a refined microstructure at regions closer to the water-cooled bottom of the casting, to increasingly coarser microstructures toward the top. Experimental expressions relating the secondary dendritic arm spacing, the spacing between lamellae and the fiber spacing to solidification thermal parameters (growth and cooling rates) are derived. For the alloys having higher Bi content, a bimodal distribution of Bi droplets was shown to occur, with small droplets, consisting of lamellae and fibers, disseminated into the matrix and larger droplets between the dendritic branches.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-019-08600-2</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1120-8926</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2020-02, Vol.139 (3), p.1741-1761
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2350939879
source Springer Link
subjects Alloy systems
Alloys
Analytical Chemistry
Binary alloys
Bottom casting
Chemistry
Chemistry and Materials Science
Cooling rate
Dendritic structure
Droplets
Fibers
Growth
Inorganic Chemistry
Measurement Science and Instrumentation
Microstructure
Parameters
Physical Chemistry
Polymer Sciences
Solidification
Specialty metals industry
Ternary alloys
Ternary systems
Thermal properties
Thermodynamic properties
Thermoelectricity
Tribology
Zinc
Zinc compounds
title Correlation between unsteady-state solidification thermal parameters and microstructural growth of Zn–8 mass% Al and Zn–8 mass% Al–XBi tribological alloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20between%20unsteady-state%20solidification%20thermal%20parameters%20and%20microstructural%20growth%20of%20Zn%E2%80%938%C2%A0mass%25%C2%A0Al%20and%20Zn%E2%80%938%C2%A0mass%25%C2%A0Al%E2%80%93XBi%20tribological%20alloys&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Septimio,%20Rudimylla%20S.&rft.date=2020-02-01&rft.volume=139&rft.issue=3&rft.spage=1741&rft.epage=1761&rft.pages=1741-1761&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-019-08600-2&rft_dat=%3Cgale_proqu%3EA613526727%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-6851907767557b2dbb0d96f2822765e32e043a6faeb34b6de97fcfe27de074683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350939879&rft_id=info:pmid/&rft_galeid=A613526727&rfr_iscdi=true