Loading…
Correlation between unsteady-state solidification thermal parameters and microstructural growth of Zn–8 mass% Al and Zn–8 mass% Al–XBi tribological alloys
In the present study, directionally solidification experiments are performed with Zn–8 mass% Al and Zn–8 mass% Al– X mass% Bi ( X = 1.5, 2.3 and 3.0 mass%) alloys using a water-cooled solidification system, which permits a wide range of solidification cooling rates to be investigated in a single e...
Saved in:
Published in: | Journal of thermal analysis and calorimetry 2020-02, Vol.139 (3), p.1741-1761 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-6851907767557b2dbb0d96f2822765e32e043a6faeb34b6de97fcfe27de074683 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-6851907767557b2dbb0d96f2822765e32e043a6faeb34b6de97fcfe27de074683 |
container_end_page | 1761 |
container_issue | 3 |
container_start_page | 1741 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 139 |
creator | Septimio, Rudimylla S. Costa, Thiago A. Silva, Cássio A. P. Vida, Talita A. de Damborenea, Juan Garcia, Amauri Cheung, Noé |
description | In the present study, directionally solidification experiments are performed with Zn–8 mass% Al and Zn–8 mass% Al–
X
mass% Bi (
X
= 1.5, 2.3 and 3.0 mass%) alloys using a water-cooled solidification system, which permits a wide range of solidification cooling rates to be investigated in a single experiment. The microstructural phases of the ternary alloys are shown to be quite similar to those of the binary alloy, with equiaxed dendrites immersed in a matrix formed by fibers or lamellae of the Al/Zn eutectoid product, with the difference that the ternary alloys have Bi droplets disseminated into the matrix and dendrite branches. The dendrites, lamellae and fibers evolve from a refined microstructure at regions closer to the water-cooled bottom of the casting, to increasingly coarser microstructures toward the top. Experimental expressions relating the secondary dendritic arm spacing, the spacing between lamellae and the fiber spacing to solidification thermal parameters (growth and cooling rates) are derived. For the alloys having higher Bi content, a bimodal distribution of Bi droplets was shown to occur, with small droplets, consisting of lamellae and fibers, disseminated into the matrix and larger droplets between the dendritic branches. |
doi_str_mv | 10.1007/s10973-019-08600-2 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2350939879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A613526727</galeid><sourcerecordid>A613526727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-6851907767557b2dbb0d96f2822765e32e043a6faeb34b6de97fcfe27de074683</originalsourceid><addsrcrecordid>eNp9kdFqFTEQhhexYD31BbxaEC-82DpJziaby-OhaqEgVAXxJmR3J9uU7OaYZKnnznfwBXrhk_RR-iSmXUGKILnIZPL9M8P8RfGcwDEBEK8jASlYBURW0HCAij4qDkndNBWVlD_OMcsxJzU8KZ7GeAkAUgI5LH5tfQjodLJ-KltMV4hTOU8xoe73VUw6YRm9s701tluodIFh1K7c6aBHTBhiqae-HG0XfExh7tIc8vcQ_FW6KL0pv063P342N9ejjvHlzfXG3fP_ZPPzyxtbpmBb7_yQ22XQOb-PR8WB0S7isz_3qvj89uTT9n119uHd6XZzVnVrKlPFm5pIEIKLuhYt7dsWeskNbSgVvEZGEdZMc6OxZeuW9yiF6QxS0SOINW_Yqnix1N0F_23GmNSln8OUWyrKapBMNkJm6nihBu1Q2cn4FHSXT495B35CY3N-wwmrKRdUZMGrB4LMJPyeBj3HqE4_nj9k6cLeLTMGNGoX7KjDXhFQd1arxWqVrVb3VufRVgVbRDHD04Dh79z_Uf0GDnWzyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350939879</pqid></control><display><type>article</type><title>Correlation between unsteady-state solidification thermal parameters and microstructural growth of Zn–8 mass% Al and Zn–8 mass% Al–XBi tribological alloys</title><source>Springer Link</source><creator>Septimio, Rudimylla S. ; Costa, Thiago A. ; Silva, Cássio A. P. ; Vida, Talita A. ; de Damborenea, Juan ; Garcia, Amauri ; Cheung, Noé</creator><creatorcontrib>Septimio, Rudimylla S. ; Costa, Thiago A. ; Silva, Cássio A. P. ; Vida, Talita A. ; de Damborenea, Juan ; Garcia, Amauri ; Cheung, Noé</creatorcontrib><description>In the present study, directionally solidification experiments are performed with Zn–8 mass% Al and Zn–8 mass% Al–
X
mass% Bi (
X
= 1.5, 2.3 and 3.0 mass%) alloys using a water-cooled solidification system, which permits a wide range of solidification cooling rates to be investigated in a single experiment. The microstructural phases of the ternary alloys are shown to be quite similar to those of the binary alloy, with equiaxed dendrites immersed in a matrix formed by fibers or lamellae of the Al/Zn eutectoid product, with the difference that the ternary alloys have Bi droplets disseminated into the matrix and dendrite branches. The dendrites, lamellae and fibers evolve from a refined microstructure at regions closer to the water-cooled bottom of the casting, to increasingly coarser microstructures toward the top. Experimental expressions relating the secondary dendritic arm spacing, the spacing between lamellae and the fiber spacing to solidification thermal parameters (growth and cooling rates) are derived. For the alloys having higher Bi content, a bimodal distribution of Bi droplets was shown to occur, with small droplets, consisting of lamellae and fibers, disseminated into the matrix and larger droplets between the dendritic branches.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-019-08600-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alloy systems ; Alloys ; Analytical Chemistry ; Binary alloys ; Bottom casting ; Chemistry ; Chemistry and Materials Science ; Cooling rate ; Dendritic structure ; Droplets ; Fibers ; Growth ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Microstructure ; Parameters ; Physical Chemistry ; Polymer Sciences ; Solidification ; Specialty metals industry ; Ternary alloys ; Ternary systems ; Thermal properties ; Thermodynamic properties ; Thermoelectricity ; Tribology ; Zinc ; Zinc compounds</subject><ispartof>Journal of thermal analysis and calorimetry, 2020-02, Vol.139 (3), p.1741-1761</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2019© Akadémiai Kiadó, Budapest, Hungary 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-6851907767557b2dbb0d96f2822765e32e043a6faeb34b6de97fcfe27de074683</citedby><cites>FETCH-LOGICAL-c429t-6851907767557b2dbb0d96f2822765e32e043a6faeb34b6de97fcfe27de074683</cites><orcidid>0000-0003-1120-8926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Septimio, Rudimylla S.</creatorcontrib><creatorcontrib>Costa, Thiago A.</creatorcontrib><creatorcontrib>Silva, Cássio A. P.</creatorcontrib><creatorcontrib>Vida, Talita A.</creatorcontrib><creatorcontrib>de Damborenea, Juan</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><creatorcontrib>Cheung, Noé</creatorcontrib><title>Correlation between unsteady-state solidification thermal parameters and microstructural growth of Zn–8 mass% Al and Zn–8 mass% Al–XBi tribological alloys</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>In the present study, directionally solidification experiments are performed with Zn–8 mass% Al and Zn–8 mass% Al–
X
mass% Bi (
X
= 1.5, 2.3 and 3.0 mass%) alloys using a water-cooled solidification system, which permits a wide range of solidification cooling rates to be investigated in a single experiment. The microstructural phases of the ternary alloys are shown to be quite similar to those of the binary alloy, with equiaxed dendrites immersed in a matrix formed by fibers or lamellae of the Al/Zn eutectoid product, with the difference that the ternary alloys have Bi droplets disseminated into the matrix and dendrite branches. The dendrites, lamellae and fibers evolve from a refined microstructure at regions closer to the water-cooled bottom of the casting, to increasingly coarser microstructures toward the top. Experimental expressions relating the secondary dendritic arm spacing, the spacing between lamellae and the fiber spacing to solidification thermal parameters (growth and cooling rates) are derived. For the alloys having higher Bi content, a bimodal distribution of Bi droplets was shown to occur, with small droplets, consisting of lamellae and fibers, disseminated into the matrix and larger droplets between the dendritic branches.</description><subject>Alloy systems</subject><subject>Alloys</subject><subject>Analytical Chemistry</subject><subject>Binary alloys</subject><subject>Bottom casting</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cooling rate</subject><subject>Dendritic structure</subject><subject>Droplets</subject><subject>Fibers</subject><subject>Growth</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Microstructure</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Solidification</subject><subject>Specialty metals industry</subject><subject>Ternary alloys</subject><subject>Ternary systems</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Thermoelectricity</subject><subject>Tribology</subject><subject>Zinc</subject><subject>Zinc compounds</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kdFqFTEQhhexYD31BbxaEC-82DpJziaby-OhaqEgVAXxJmR3J9uU7OaYZKnnznfwBXrhk_RR-iSmXUGKILnIZPL9M8P8RfGcwDEBEK8jASlYBURW0HCAij4qDkndNBWVlD_OMcsxJzU8KZ7GeAkAUgI5LH5tfQjodLJ-KltMV4hTOU8xoe73VUw6YRm9s701tluodIFh1K7c6aBHTBhiqae-HG0XfExh7tIc8vcQ_FW6KL0pv063P342N9ejjvHlzfXG3fP_ZPPzyxtbpmBb7_yQ22XQOb-PR8WB0S7isz_3qvj89uTT9n119uHd6XZzVnVrKlPFm5pIEIKLuhYt7dsWeskNbSgVvEZGEdZMc6OxZeuW9yiF6QxS0SOINW_Yqnix1N0F_23GmNSln8OUWyrKapBMNkJm6nihBu1Q2cn4FHSXT495B35CY3N-wwmrKRdUZMGrB4LMJPyeBj3HqE4_nj9k6cLeLTMGNGoX7KjDXhFQd1arxWqVrVb3VufRVgVbRDHD04Dh79z_Uf0GDnWzyw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Septimio, Rudimylla S.</creator><creator>Costa, Thiago A.</creator><creator>Silva, Cássio A. P.</creator><creator>Vida, Talita A.</creator><creator>de Damborenea, Juan</creator><creator>Garcia, Amauri</creator><creator>Cheung, Noé</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0003-1120-8926</orcidid></search><sort><creationdate>20200201</creationdate><title>Correlation between unsteady-state solidification thermal parameters and microstructural growth of Zn–8 mass% Al and Zn–8 mass% Al–XBi tribological alloys</title><author>Septimio, Rudimylla S. ; Costa, Thiago A. ; Silva, Cássio A. P. ; Vida, Talita A. ; de Damborenea, Juan ; Garcia, Amauri ; Cheung, Noé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-6851907767557b2dbb0d96f2822765e32e043a6faeb34b6de97fcfe27de074683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloy systems</topic><topic>Alloys</topic><topic>Analytical Chemistry</topic><topic>Binary alloys</topic><topic>Bottom casting</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cooling rate</topic><topic>Dendritic structure</topic><topic>Droplets</topic><topic>Fibers</topic><topic>Growth</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Microstructure</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Solidification</topic><topic>Specialty metals industry</topic><topic>Ternary alloys</topic><topic>Ternary systems</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Thermoelectricity</topic><topic>Tribology</topic><topic>Zinc</topic><topic>Zinc compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Septimio, Rudimylla S.</creatorcontrib><creatorcontrib>Costa, Thiago A.</creatorcontrib><creatorcontrib>Silva, Cássio A. P.</creatorcontrib><creatorcontrib>Vida, Talita A.</creatorcontrib><creatorcontrib>de Damborenea, Juan</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><creatorcontrib>Cheung, Noé</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Septimio, Rudimylla S.</au><au>Costa, Thiago A.</au><au>Silva, Cássio A. P.</au><au>Vida, Talita A.</au><au>de Damborenea, Juan</au><au>Garcia, Amauri</au><au>Cheung, Noé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation between unsteady-state solidification thermal parameters and microstructural growth of Zn–8 mass% Al and Zn–8 mass% Al–XBi tribological alloys</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>139</volume><issue>3</issue><spage>1741</spage><epage>1761</epage><pages>1741-1761</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>In the present study, directionally solidification experiments are performed with Zn–8 mass% Al and Zn–8 mass% Al–
X
mass% Bi (
X
= 1.5, 2.3 and 3.0 mass%) alloys using a water-cooled solidification system, which permits a wide range of solidification cooling rates to be investigated in a single experiment. The microstructural phases of the ternary alloys are shown to be quite similar to those of the binary alloy, with equiaxed dendrites immersed in a matrix formed by fibers or lamellae of the Al/Zn eutectoid product, with the difference that the ternary alloys have Bi droplets disseminated into the matrix and dendrite branches. The dendrites, lamellae and fibers evolve from a refined microstructure at regions closer to the water-cooled bottom of the casting, to increasingly coarser microstructures toward the top. Experimental expressions relating the secondary dendritic arm spacing, the spacing between lamellae and the fiber spacing to solidification thermal parameters (growth and cooling rates) are derived. For the alloys having higher Bi content, a bimodal distribution of Bi droplets was shown to occur, with small droplets, consisting of lamellae and fibers, disseminated into the matrix and larger droplets between the dendritic branches.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-019-08600-2</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1120-8926</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2020-02, Vol.139 (3), p.1741-1761 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2350939879 |
source | Springer Link |
subjects | Alloy systems Alloys Analytical Chemistry Binary alloys Bottom casting Chemistry Chemistry and Materials Science Cooling rate Dendritic structure Droplets Fibers Growth Inorganic Chemistry Measurement Science and Instrumentation Microstructure Parameters Physical Chemistry Polymer Sciences Solidification Specialty metals industry Ternary alloys Ternary systems Thermal properties Thermodynamic properties Thermoelectricity Tribology Zinc Zinc compounds |
title | Correlation between unsteady-state solidification thermal parameters and microstructural growth of Zn–8 mass% Al and Zn–8 mass% Al–XBi tribological alloys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20between%20unsteady-state%20solidification%20thermal%20parameters%20and%20microstructural%20growth%20of%20Zn%E2%80%938%C2%A0mass%25%C2%A0Al%20and%20Zn%E2%80%938%C2%A0mass%25%C2%A0Al%E2%80%93XBi%20tribological%20alloys&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Septimio,%20Rudimylla%20S.&rft.date=2020-02-01&rft.volume=139&rft.issue=3&rft.spage=1741&rft.epage=1761&rft.pages=1741-1761&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-019-08600-2&rft_dat=%3Cgale_proqu%3EA613526727%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-6851907767557b2dbb0d96f2822765e32e043a6faeb34b6de97fcfe27de074683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350939879&rft_id=info:pmid/&rft_galeid=A613526727&rfr_iscdi=true |