Loading…
Low‐Temperature Selective Growth of Heavily Boron‐Doped Germanium Source/Drain Layers for Advanced pMOS Devices
The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The incorporation of B in Ge can exceed 6 ×...
Saved in:
Published in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2020-02, Vol.217 (3), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3178-d3e83efc498febd5fff5bb1f28519bd4a5cc93b613ea7c00aee3952bfd1f58eb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3178-d3e83efc498febd5fff5bb1f28519bd4a5cc93b613ea7c00aee3952bfd1f58eb3 |
container_end_page | n/a |
container_issue | 3 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 217 |
creator | Porret, Clement Vohra, Anurag Nakazaki, Nobuya Hikavyy, Andriy Douhard, Bastien Meersschaut, Johan Bogdanowicz, Janusz Rosseel, Erik Pourtois, Geoffrey Langer, Robert Loo, Roger |
description | The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The incorporation of B in Ge can exceed 6 × 1020 cm−3, close to a factor 100 above the solubility limit, without any significant degradation of the Ge:B crystalline quality, although high B‐doping induces an unwanted contraction of the Ge lattice. Micro‐Hall effect measurements and the multiring circular transmission line method are used to evaluate the active carrier concentrations and resistivities of Ti/Ge:B contacts. Even though the resistivity of as‐grown layers saturates for chemical B concentrations approaching 1 × 1021 cm−3 and increases beyond that level, a contact resistivity below 3 × 10−9 Ω cm2 is obtained for the highest active doping concentration, showing that a compromise must be found to decrease the total contact resistance. Finally, first principles simulations are used to understand dopant deactivation mechanisms in the Ge:B system. In conclusion, the formation of boron‐interstitial clusters is most likely the cause for electrical performance degradation at high doping values.
The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The experimental studies are supported by first principles simulations which are used to understand dopant deactivation mechanisms in the Ge:B system. |
doi_str_mv | 10.1002/pssa.201900628 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2351425578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2351425578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-d3e83efc498febd5fff5bb1f28519bd4a5cc93b613ea7c00aee3952bfd1f58eb3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMltiTmvHcX7GQqFFCipSyhw5zrVIlcTBTlJl4xF4Rp6EVEVlZLp3OOe7Vx9Ct5TMKCHuvLFWzFxCI0J8NzxDExr6ruMzGp2fdkIu0ZW1O0I87gV0gmys99-fX1uoGjCi7QzgBEqQbdEDXhm9b9-xVngNoi_KAd9ro-uRX-oGcrwCU4m66Cqc6M5ImC-NKGociwGMxUobvMh7UcsRbV42CV5CX0iw1-hCidLCze-corenx-3D2ok3q-eHRexIRoPQyRmEDJT0olBBlnOlFM8yqtyQ0yjLPcGljFjmUwYikIQIABZxN1M5VTyEjE3R3TG3MfqjA9umu_HNejyZuoxTz-U8CEdqdqSk0dYaUGljikqYIaUkPRSbHopNT8WOQnQU9kUJwz90-pokiz_3Bw7XgSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2351425578</pqid></control><display><type>article</type><title>Low‐Temperature Selective Growth of Heavily Boron‐Doped Germanium Source/Drain Layers for Advanced pMOS Devices</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Porret, Clement ; Vohra, Anurag ; Nakazaki, Nobuya ; Hikavyy, Andriy ; Douhard, Bastien ; Meersschaut, Johan ; Bogdanowicz, Janusz ; Rosseel, Erik ; Pourtois, Geoffrey ; Langer, Robert ; Loo, Roger</creator><creatorcontrib>Porret, Clement ; Vohra, Anurag ; Nakazaki, Nobuya ; Hikavyy, Andriy ; Douhard, Bastien ; Meersschaut, Johan ; Bogdanowicz, Janusz ; Rosseel, Erik ; Pourtois, Geoffrey ; Langer, Robert ; Loo, Roger</creatorcontrib><description>The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The incorporation of B in Ge can exceed 6 × 1020 cm−3, close to a factor 100 above the solubility limit, without any significant degradation of the Ge:B crystalline quality, although high B‐doping induces an unwanted contraction of the Ge lattice. Micro‐Hall effect measurements and the multiring circular transmission line method are used to evaluate the active carrier concentrations and resistivities of Ti/Ge:B contacts. Even though the resistivity of as‐grown layers saturates for chemical B concentrations approaching 1 × 1021 cm−3 and increases beyond that level, a contact resistivity below 3 × 10−9 Ω cm2 is obtained for the highest active doping concentration, showing that a compromise must be found to decrease the total contact resistance. Finally, first principles simulations are used to understand dopant deactivation mechanisms in the Ge:B system. In conclusion, the formation of boron‐interstitial clusters is most likely the cause for electrical performance degradation at high doping values.
The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The experimental studies are supported by first principles simulations which are used to understand dopant deactivation mechanisms in the Ge:B system.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201900628</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Boron ; Carrier density ; Chemical vapor deposition ; Contact resistance ; contact resistivity ; Deactivation ; Doping ; Electric contacts ; Electrical resistivity ; First principles ; Germanium ; germanium pMOS ; Hall effect ; Low temperature ; low-temperature selective epitaxial growth ; Material properties ; Organic chemistry ; Performance degradation ; source/drain materials ; Transmission lines</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-02, Vol.217 (3), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-d3e83efc498febd5fff5bb1f28519bd4a5cc93b613ea7c00aee3952bfd1f58eb3</citedby><cites>FETCH-LOGICAL-c3178-d3e83efc498febd5fff5bb1f28519bd4a5cc93b613ea7c00aee3952bfd1f58eb3</cites><orcidid>0000-0002-2831-0719 ; 0000-0002-4561-348X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Porret, Clement</creatorcontrib><creatorcontrib>Vohra, Anurag</creatorcontrib><creatorcontrib>Nakazaki, Nobuya</creatorcontrib><creatorcontrib>Hikavyy, Andriy</creatorcontrib><creatorcontrib>Douhard, Bastien</creatorcontrib><creatorcontrib>Meersschaut, Johan</creatorcontrib><creatorcontrib>Bogdanowicz, Janusz</creatorcontrib><creatorcontrib>Rosseel, Erik</creatorcontrib><creatorcontrib>Pourtois, Geoffrey</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Loo, Roger</creatorcontrib><title>Low‐Temperature Selective Growth of Heavily Boron‐Doped Germanium Source/Drain Layers for Advanced pMOS Devices</title><title>Physica status solidi. A, Applications and materials science</title><description>The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The incorporation of B in Ge can exceed 6 × 1020 cm−3, close to a factor 100 above the solubility limit, without any significant degradation of the Ge:B crystalline quality, although high B‐doping induces an unwanted contraction of the Ge lattice. Micro‐Hall effect measurements and the multiring circular transmission line method are used to evaluate the active carrier concentrations and resistivities of Ti/Ge:B contacts. Even though the resistivity of as‐grown layers saturates for chemical B concentrations approaching 1 × 1021 cm−3 and increases beyond that level, a contact resistivity below 3 × 10−9 Ω cm2 is obtained for the highest active doping concentration, showing that a compromise must be found to decrease the total contact resistance. Finally, first principles simulations are used to understand dopant deactivation mechanisms in the Ge:B system. In conclusion, the formation of boron‐interstitial clusters is most likely the cause for electrical performance degradation at high doping values.
The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The experimental studies are supported by first principles simulations which are used to understand dopant deactivation mechanisms in the Ge:B system.</description><subject>Boron</subject><subject>Carrier density</subject><subject>Chemical vapor deposition</subject><subject>Contact resistance</subject><subject>contact resistivity</subject><subject>Deactivation</subject><subject>Doping</subject><subject>Electric contacts</subject><subject>Electrical resistivity</subject><subject>First principles</subject><subject>Germanium</subject><subject>germanium pMOS</subject><subject>Hall effect</subject><subject>Low temperature</subject><subject>low-temperature selective epitaxial growth</subject><subject>Material properties</subject><subject>Organic chemistry</subject><subject>Performance degradation</subject><subject>source/drain materials</subject><subject>Transmission lines</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMltiTmvHcX7GQqFFCipSyhw5zrVIlcTBTlJl4xF4Rp6EVEVlZLp3OOe7Vx9Ct5TMKCHuvLFWzFxCI0J8NzxDExr6ruMzGp2fdkIu0ZW1O0I87gV0gmys99-fX1uoGjCi7QzgBEqQbdEDXhm9b9-xVngNoi_KAd9ro-uRX-oGcrwCU4m66Cqc6M5ImC-NKGociwGMxUobvMh7UcsRbV42CV5CX0iw1-hCidLCze-corenx-3D2ok3q-eHRexIRoPQyRmEDJT0olBBlnOlFM8yqtyQ0yjLPcGljFjmUwYikIQIABZxN1M5VTyEjE3R3TG3MfqjA9umu_HNejyZuoxTz-U8CEdqdqSk0dYaUGljikqYIaUkPRSbHopNT8WOQnQU9kUJwz90-pokiz_3Bw7XgSE</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Porret, Clement</creator><creator>Vohra, Anurag</creator><creator>Nakazaki, Nobuya</creator><creator>Hikavyy, Andriy</creator><creator>Douhard, Bastien</creator><creator>Meersschaut, Johan</creator><creator>Bogdanowicz, Janusz</creator><creator>Rosseel, Erik</creator><creator>Pourtois, Geoffrey</creator><creator>Langer, Robert</creator><creator>Loo, Roger</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2831-0719</orcidid><orcidid>https://orcid.org/0000-0002-4561-348X</orcidid></search><sort><creationdate>202002</creationdate><title>Low‐Temperature Selective Growth of Heavily Boron‐Doped Germanium Source/Drain Layers for Advanced pMOS Devices</title><author>Porret, Clement ; Vohra, Anurag ; Nakazaki, Nobuya ; Hikavyy, Andriy ; Douhard, Bastien ; Meersschaut, Johan ; Bogdanowicz, Janusz ; Rosseel, Erik ; Pourtois, Geoffrey ; Langer, Robert ; Loo, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-d3e83efc498febd5fff5bb1f28519bd4a5cc93b613ea7c00aee3952bfd1f58eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boron</topic><topic>Carrier density</topic><topic>Chemical vapor deposition</topic><topic>Contact resistance</topic><topic>contact resistivity</topic><topic>Deactivation</topic><topic>Doping</topic><topic>Electric contacts</topic><topic>Electrical resistivity</topic><topic>First principles</topic><topic>Germanium</topic><topic>germanium pMOS</topic><topic>Hall effect</topic><topic>Low temperature</topic><topic>low-temperature selective epitaxial growth</topic><topic>Material properties</topic><topic>Organic chemistry</topic><topic>Performance degradation</topic><topic>source/drain materials</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porret, Clement</creatorcontrib><creatorcontrib>Vohra, Anurag</creatorcontrib><creatorcontrib>Nakazaki, Nobuya</creatorcontrib><creatorcontrib>Hikavyy, Andriy</creatorcontrib><creatorcontrib>Douhard, Bastien</creatorcontrib><creatorcontrib>Meersschaut, Johan</creatorcontrib><creatorcontrib>Bogdanowicz, Janusz</creatorcontrib><creatorcontrib>Rosseel, Erik</creatorcontrib><creatorcontrib>Pourtois, Geoffrey</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Loo, Roger</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porret, Clement</au><au>Vohra, Anurag</au><au>Nakazaki, Nobuya</au><au>Hikavyy, Andriy</au><au>Douhard, Bastien</au><au>Meersschaut, Johan</au><au>Bogdanowicz, Janusz</au><au>Rosseel, Erik</au><au>Pourtois, Geoffrey</au><au>Langer, Robert</au><au>Loo, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low‐Temperature Selective Growth of Heavily Boron‐Doped Germanium Source/Drain Layers for Advanced pMOS Devices</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2020-02</date><risdate>2020</risdate><volume>217</volume><issue>3</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The incorporation of B in Ge can exceed 6 × 1020 cm−3, close to a factor 100 above the solubility limit, without any significant degradation of the Ge:B crystalline quality, although high B‐doping induces an unwanted contraction of the Ge lattice. Micro‐Hall effect measurements and the multiring circular transmission line method are used to evaluate the active carrier concentrations and resistivities of Ti/Ge:B contacts. Even though the resistivity of as‐grown layers saturates for chemical B concentrations approaching 1 × 1021 cm−3 and increases beyond that level, a contact resistivity below 3 × 10−9 Ω cm2 is obtained for the highest active doping concentration, showing that a compromise must be found to decrease the total contact resistance. Finally, first principles simulations are used to understand dopant deactivation mechanisms in the Ge:B system. In conclusion, the formation of boron‐interstitial clusters is most likely the cause for electrical performance degradation at high doping values.
The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The experimental studies are supported by first principles simulations which are used to understand dopant deactivation mechanisms in the Ge:B system.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201900628</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2831-0719</orcidid><orcidid>https://orcid.org/0000-0002-4561-348X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2020-02, Vol.217 (3), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2351425578 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Boron Carrier density Chemical vapor deposition Contact resistance contact resistivity Deactivation Doping Electric contacts Electrical resistivity First principles Germanium germanium pMOS Hall effect Low temperature low-temperature selective epitaxial growth Material properties Organic chemistry Performance degradation source/drain materials Transmission lines |
title | Low‐Temperature Selective Growth of Heavily Boron‐Doped Germanium Source/Drain Layers for Advanced pMOS Devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%E2%80%90Temperature%20Selective%20Growth%20of%20Heavily%20Boron%E2%80%90Doped%20Germanium%20Source/Drain%20Layers%20for%20Advanced%20pMOS%20Devices&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Porret,%20Clement&rft.date=2020-02&rft.volume=217&rft.issue=3&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201900628&rft_dat=%3Cproquest_cross%3E2351425578%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3178-d3e83efc498febd5fff5bb1f28519bd4a5cc93b613ea7c00aee3952bfd1f58eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2351425578&rft_id=info:pmid/&rfr_iscdi=true |