Loading…

Low‐Temperature Selective Growth of Heavily Boron‐Doped Germanium Source/Drain Layers for Advanced pMOS Devices

The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The incorporation of B in Ge can exceed 6 ×...

Full description

Saved in:
Bibliographic Details
Published in:Physica status solidi. A, Applications and materials science Applications and materials science, 2020-02, Vol.217 (3), p.n/a
Main Authors: Porret, Clement, Vohra, Anurag, Nakazaki, Nobuya, Hikavyy, Andriy, Douhard, Bastien, Meersschaut, Johan, Bogdanowicz, Janusz, Rosseel, Erik, Pourtois, Geoffrey, Langer, Robert, Loo, Roger
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3178-d3e83efc498febd5fff5bb1f28519bd4a5cc93b613ea7c00aee3952bfd1f58eb3
cites cdi_FETCH-LOGICAL-c3178-d3e83efc498febd5fff5bb1f28519bd4a5cc93b613ea7c00aee3952bfd1f58eb3
container_end_page n/a
container_issue 3
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 217
creator Porret, Clement
Vohra, Anurag
Nakazaki, Nobuya
Hikavyy, Andriy
Douhard, Bastien
Meersschaut, Johan
Bogdanowicz, Janusz
Rosseel, Erik
Pourtois, Geoffrey
Langer, Robert
Loo, Roger
description The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The incorporation of B in Ge can exceed 6 × 1020 cm−3, close to a factor 100 above the solubility limit, without any significant degradation of the Ge:B crystalline quality, although high B‐doping induces an unwanted contraction of the Ge lattice. Micro‐Hall effect measurements and the multiring circular transmission line method are used to evaluate the active carrier concentrations and resistivities of Ti/Ge:B contacts. Even though the resistivity of as‐grown layers saturates for chemical B concentrations approaching 1 × 1021 cm−3 and increases beyond that level, a contact resistivity below 3 × 10−9 Ω cm2 is obtained for the highest active doping concentration, showing that a compromise must be found to decrease the total contact resistance. Finally, first principles simulations are used to understand dopant deactivation mechanisms in the Ge:B system. In conclusion, the formation of boron‐interstitial clusters is most likely the cause for electrical performance degradation at high doping values. The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The experimental studies are supported by first principles simulations which are used to understand dopant deactivation mechanisms in the Ge:B system.
doi_str_mv 10.1002/pssa.201900628
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2351425578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2351425578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-d3e83efc498febd5fff5bb1f28519bd4a5cc93b613ea7c00aee3952bfd1f58eb3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMltiTmvHcX7GQqFFCipSyhw5zrVIlcTBTlJl4xF4Rp6EVEVlZLp3OOe7Vx9Ct5TMKCHuvLFWzFxCI0J8NzxDExr6ruMzGp2fdkIu0ZW1O0I87gV0gmys99-fX1uoGjCi7QzgBEqQbdEDXhm9b9-xVngNoi_KAd9ro-uRX-oGcrwCU4m66Cqc6M5ImC-NKGociwGMxUobvMh7UcsRbV42CV5CX0iw1-hCidLCze-corenx-3D2ok3q-eHRexIRoPQyRmEDJT0olBBlnOlFM8yqtyQ0yjLPcGljFjmUwYikIQIABZxN1M5VTyEjE3R3TG3MfqjA9umu_HNejyZuoxTz-U8CEdqdqSk0dYaUGljikqYIaUkPRSbHopNT8WOQnQU9kUJwz90-pokiz_3Bw7XgSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2351425578</pqid></control><display><type>article</type><title>Low‐Temperature Selective Growth of Heavily Boron‐Doped Germanium Source/Drain Layers for Advanced pMOS Devices</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Porret, Clement ; Vohra, Anurag ; Nakazaki, Nobuya ; Hikavyy, Andriy ; Douhard, Bastien ; Meersschaut, Johan ; Bogdanowicz, Janusz ; Rosseel, Erik ; Pourtois, Geoffrey ; Langer, Robert ; Loo, Roger</creator><creatorcontrib>Porret, Clement ; Vohra, Anurag ; Nakazaki, Nobuya ; Hikavyy, Andriy ; Douhard, Bastien ; Meersschaut, Johan ; Bogdanowicz, Janusz ; Rosseel, Erik ; Pourtois, Geoffrey ; Langer, Robert ; Loo, Roger</creatorcontrib><description>The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The incorporation of B in Ge can exceed 6 × 1020 cm−3, close to a factor 100 above the solubility limit, without any significant degradation of the Ge:B crystalline quality, although high B‐doping induces an unwanted contraction of the Ge lattice. Micro‐Hall effect measurements and the multiring circular transmission line method are used to evaluate the active carrier concentrations and resistivities of Ti/Ge:B contacts. Even though the resistivity of as‐grown layers saturates for chemical B concentrations approaching 1 × 1021 cm−3 and increases beyond that level, a contact resistivity below 3 × 10−9 Ω cm2 is obtained for the highest active doping concentration, showing that a compromise must be found to decrease the total contact resistance. Finally, first principles simulations are used to understand dopant deactivation mechanisms in the Ge:B system. In conclusion, the formation of boron‐interstitial clusters is most likely the cause for electrical performance degradation at high doping values. The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The experimental studies are supported by first principles simulations which are used to understand dopant deactivation mechanisms in the Ge:B system.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201900628</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Boron ; Carrier density ; Chemical vapor deposition ; Contact resistance ; contact resistivity ; Deactivation ; Doping ; Electric contacts ; Electrical resistivity ; First principles ; Germanium ; germanium pMOS ; Hall effect ; Low temperature ; low-temperature selective epitaxial growth ; Material properties ; Organic chemistry ; Performance degradation ; source/drain materials ; Transmission lines</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-02, Vol.217 (3), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-d3e83efc498febd5fff5bb1f28519bd4a5cc93b613ea7c00aee3952bfd1f58eb3</citedby><cites>FETCH-LOGICAL-c3178-d3e83efc498febd5fff5bb1f28519bd4a5cc93b613ea7c00aee3952bfd1f58eb3</cites><orcidid>0000-0002-2831-0719 ; 0000-0002-4561-348X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Porret, Clement</creatorcontrib><creatorcontrib>Vohra, Anurag</creatorcontrib><creatorcontrib>Nakazaki, Nobuya</creatorcontrib><creatorcontrib>Hikavyy, Andriy</creatorcontrib><creatorcontrib>Douhard, Bastien</creatorcontrib><creatorcontrib>Meersschaut, Johan</creatorcontrib><creatorcontrib>Bogdanowicz, Janusz</creatorcontrib><creatorcontrib>Rosseel, Erik</creatorcontrib><creatorcontrib>Pourtois, Geoffrey</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Loo, Roger</creatorcontrib><title>Low‐Temperature Selective Growth of Heavily Boron‐Doped Germanium Source/Drain Layers for Advanced pMOS Devices</title><title>Physica status solidi. A, Applications and materials science</title><description>The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The incorporation of B in Ge can exceed 6 × 1020 cm−3, close to a factor 100 above the solubility limit, without any significant degradation of the Ge:B crystalline quality, although high B‐doping induces an unwanted contraction of the Ge lattice. Micro‐Hall effect measurements and the multiring circular transmission line method are used to evaluate the active carrier concentrations and resistivities of Ti/Ge:B contacts. Even though the resistivity of as‐grown layers saturates for chemical B concentrations approaching 1 × 1021 cm−3 and increases beyond that level, a contact resistivity below 3 × 10−9 Ω cm2 is obtained for the highest active doping concentration, showing that a compromise must be found to decrease the total contact resistance. Finally, first principles simulations are used to understand dopant deactivation mechanisms in the Ge:B system. In conclusion, the formation of boron‐interstitial clusters is most likely the cause for electrical performance degradation at high doping values. The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The experimental studies are supported by first principles simulations which are used to understand dopant deactivation mechanisms in the Ge:B system.</description><subject>Boron</subject><subject>Carrier density</subject><subject>Chemical vapor deposition</subject><subject>Contact resistance</subject><subject>contact resistivity</subject><subject>Deactivation</subject><subject>Doping</subject><subject>Electric contacts</subject><subject>Electrical resistivity</subject><subject>First principles</subject><subject>Germanium</subject><subject>germanium pMOS</subject><subject>Hall effect</subject><subject>Low temperature</subject><subject>low-temperature selective epitaxial growth</subject><subject>Material properties</subject><subject>Organic chemistry</subject><subject>Performance degradation</subject><subject>source/drain materials</subject><subject>Transmission lines</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMltiTmvHcX7GQqFFCipSyhw5zrVIlcTBTlJl4xF4Rp6EVEVlZLp3OOe7Vx9Ct5TMKCHuvLFWzFxCI0J8NzxDExr6ruMzGp2fdkIu0ZW1O0I87gV0gmys99-fX1uoGjCi7QzgBEqQbdEDXhm9b9-xVngNoi_KAd9ro-uRX-oGcrwCU4m66Cqc6M5ImC-NKGociwGMxUobvMh7UcsRbV42CV5CX0iw1-hCidLCze-corenx-3D2ok3q-eHRexIRoPQyRmEDJT0olBBlnOlFM8yqtyQ0yjLPcGljFjmUwYikIQIABZxN1M5VTyEjE3R3TG3MfqjA9umu_HNejyZuoxTz-U8CEdqdqSk0dYaUGljikqYIaUkPRSbHopNT8WOQnQU9kUJwz90-pokiz_3Bw7XgSE</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Porret, Clement</creator><creator>Vohra, Anurag</creator><creator>Nakazaki, Nobuya</creator><creator>Hikavyy, Andriy</creator><creator>Douhard, Bastien</creator><creator>Meersschaut, Johan</creator><creator>Bogdanowicz, Janusz</creator><creator>Rosseel, Erik</creator><creator>Pourtois, Geoffrey</creator><creator>Langer, Robert</creator><creator>Loo, Roger</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2831-0719</orcidid><orcidid>https://orcid.org/0000-0002-4561-348X</orcidid></search><sort><creationdate>202002</creationdate><title>Low‐Temperature Selective Growth of Heavily Boron‐Doped Germanium Source/Drain Layers for Advanced pMOS Devices</title><author>Porret, Clement ; Vohra, Anurag ; Nakazaki, Nobuya ; Hikavyy, Andriy ; Douhard, Bastien ; Meersschaut, Johan ; Bogdanowicz, Janusz ; Rosseel, Erik ; Pourtois, Geoffrey ; Langer, Robert ; Loo, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-d3e83efc498febd5fff5bb1f28519bd4a5cc93b613ea7c00aee3952bfd1f58eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boron</topic><topic>Carrier density</topic><topic>Chemical vapor deposition</topic><topic>Contact resistance</topic><topic>contact resistivity</topic><topic>Deactivation</topic><topic>Doping</topic><topic>Electric contacts</topic><topic>Electrical resistivity</topic><topic>First principles</topic><topic>Germanium</topic><topic>germanium pMOS</topic><topic>Hall effect</topic><topic>Low temperature</topic><topic>low-temperature selective epitaxial growth</topic><topic>Material properties</topic><topic>Organic chemistry</topic><topic>Performance degradation</topic><topic>source/drain materials</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porret, Clement</creatorcontrib><creatorcontrib>Vohra, Anurag</creatorcontrib><creatorcontrib>Nakazaki, Nobuya</creatorcontrib><creatorcontrib>Hikavyy, Andriy</creatorcontrib><creatorcontrib>Douhard, Bastien</creatorcontrib><creatorcontrib>Meersschaut, Johan</creatorcontrib><creatorcontrib>Bogdanowicz, Janusz</creatorcontrib><creatorcontrib>Rosseel, Erik</creatorcontrib><creatorcontrib>Pourtois, Geoffrey</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Loo, Roger</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porret, Clement</au><au>Vohra, Anurag</au><au>Nakazaki, Nobuya</au><au>Hikavyy, Andriy</au><au>Douhard, Bastien</au><au>Meersschaut, Johan</au><au>Bogdanowicz, Janusz</au><au>Rosseel, Erik</au><au>Pourtois, Geoffrey</au><au>Langer, Robert</au><au>Loo, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low‐Temperature Selective Growth of Heavily Boron‐Doped Germanium Source/Drain Layers for Advanced pMOS Devices</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2020-02</date><risdate>2020</risdate><volume>217</volume><issue>3</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The incorporation of B in Ge can exceed 6 × 1020 cm−3, close to a factor 100 above the solubility limit, without any significant degradation of the Ge:B crystalline quality, although high B‐doping induces an unwanted contraction of the Ge lattice. Micro‐Hall effect measurements and the multiring circular transmission line method are used to evaluate the active carrier concentrations and resistivities of Ti/Ge:B contacts. Even though the resistivity of as‐grown layers saturates for chemical B concentrations approaching 1 × 1021 cm−3 and increases beyond that level, a contact resistivity below 3 × 10−9 Ω cm2 is obtained for the highest active doping concentration, showing that a compromise must be found to decrease the total contact resistance. Finally, first principles simulations are used to understand dopant deactivation mechanisms in the Ge:B system. In conclusion, the formation of boron‐interstitial clusters is most likely the cause for electrical performance degradation at high doping values. The peculiarities of heavily boron‐doped germanium, selectively grown at low temperature by means of a cyclic deposition and etch chemical vapor deposition process, are investigated through the analysis of the structural and electrical material properties. The experimental studies are supported by first principles simulations which are used to understand dopant deactivation mechanisms in the Ge:B system.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201900628</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2831-0719</orcidid><orcidid>https://orcid.org/0000-0002-4561-348X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2020-02, Vol.217 (3), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2351425578
source Wiley-Blackwell Read & Publish Collection
subjects Boron
Carrier density
Chemical vapor deposition
Contact resistance
contact resistivity
Deactivation
Doping
Electric contacts
Electrical resistivity
First principles
Germanium
germanium pMOS
Hall effect
Low temperature
low-temperature selective epitaxial growth
Material properties
Organic chemistry
Performance degradation
source/drain materials
Transmission lines
title Low‐Temperature Selective Growth of Heavily Boron‐Doped Germanium Source/Drain Layers for Advanced pMOS Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%E2%80%90Temperature%20Selective%20Growth%20of%20Heavily%20Boron%E2%80%90Doped%20Germanium%20Source/Drain%20Layers%20for%20Advanced%20pMOS%20Devices&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Porret,%20Clement&rft.date=2020-02&rft.volume=217&rft.issue=3&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201900628&rft_dat=%3Cproquest_cross%3E2351425578%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3178-d3e83efc498febd5fff5bb1f28519bd4a5cc93b613ea7c00aee3952bfd1f58eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2351425578&rft_id=info:pmid/&rfr_iscdi=true