Loading…

Thermal and Mechanical Stability of Immobilized Candida antarctica Lipase B: an Approximation to Mechanochemical Energetics in Enzyme Catalysis

Very recently, several successful enzymatic processes performed with mechanical activation have been disclosed; that is, despite the mechanical stress caused by High‐Speed Ball‐Milling, immobilized enzymes can retain activity. In the present study, the effect of thermal and mechanical stress was exa...

Full description

Saved in:
Bibliographic Details
Published in:ChemCatChem 2020-02, Vol.12 (3), p.803-811
Main Authors: Pérez‐Venegas, Mario, Tellez‐Cruz, Miriam M., Solorza‐Feria, Omar, López‐Munguía, Agustín, Castillo, Edmundo, Juaristi, Eusebio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3174-d969f1319a74274352962704730ec5791cf1603b7c9f204613ccaf6d02c5b2923
cites cdi_FETCH-LOGICAL-c3174-d969f1319a74274352962704730ec5791cf1603b7c9f204613ccaf6d02c5b2923
container_end_page 811
container_issue 3
container_start_page 803
container_title ChemCatChem
container_volume 12
creator Pérez‐Venegas, Mario
Tellez‐Cruz, Miriam M.
Solorza‐Feria, Omar
López‐Munguía, Agustín
Castillo, Edmundo
Juaristi, Eusebio
description Very recently, several successful enzymatic processes performed with mechanical activation have been disclosed; that is, despite the mechanical stress caused by High‐Speed Ball‐Milling, immobilized enzymes can retain activity. In the present study, the effect of thermal and mechanical stress was examined as potential inducers of enzymatic denaturation, when using either free, immobilized, or ground immobilized enzyme. The recorded observations show a remarkable stability of ground immobilized enzyme. Moreover, ground biocatalyst turns out to exhibit an increase of one order of magnitude in the efficiency of the catalytic process, maintaining excellent enantiodiscrimination, without significant activity loss even after four milling cycles. These observations rule out enzyme inactivation as direct consequence of the milling process. Additionally, boosted enzyme efficiency was used to optimize a relatively inefficient chiral amine resolution reaction, achieving a 25 % faster biotransformation (in 45 min) and yielding essentially enantiopure products (ee>99%, E>500). Beating enzymes for breakfast: For the first time, the effect of grinding over enzyme activity and stability was systematically studied. The results indicate a high enzyme stability to the mechanochemical conditions and, unexpectedly, and increment in enzyme activity of one order of magnitude after the mechanochemical process without loss in enantiopreference of the enzyme.
doi_str_mv 10.1002/cctc.201901714
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2351466679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2351466679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-d969f1319a74274352962704730ec5791cf1603b7c9f204613ccaf6d02c5b2923</originalsourceid><addsrcrecordid>eNqFkE9PwyAYxhujiXN69UziuZM_LQxvs5m6ZMaD80wYpY6lLRVYtPsSfmWZW-bREzxvfs8D75Mk1wiOEIT4VqmgRhgiDhFD2UkyQGPKUjLm_PR4H8Pz5ML7NYSUE5YPku_FSrtG1kC2JXjWaiVbo6J8DXJpahN6YCswaxq7U1tdgiKCppSRD9KpEGEwN530GtzfxSGYdJ2zX6aRwdgWBHsItWqlm9_kaavdu45GD0wb1bZvdEwNsu698ZfJWSVrr68O5zB5e5guiqd0_vI4KybzVBHEsrTklFeIIC5ZhllGcswpZjBjBGqVM45UhSgkS6Z4hWFGEVFKVrSEWOVLzDEZJjf73Pjbj432QaztxrXxSYFJjjJKKeORGu0p5az3Tleic3E11wsExa50sStdHEuPBr43fJpa9__QoigWxZ_3B0cjhqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2351466679</pqid></control><display><type>article</type><title>Thermal and Mechanical Stability of Immobilized Candida antarctica Lipase B: an Approximation to Mechanochemical Energetics in Enzyme Catalysis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Pérez‐Venegas, Mario ; Tellez‐Cruz, Miriam M. ; Solorza‐Feria, Omar ; López‐Munguía, Agustín ; Castillo, Edmundo ; Juaristi, Eusebio</creator><creatorcontrib>Pérez‐Venegas, Mario ; Tellez‐Cruz, Miriam M. ; Solorza‐Feria, Omar ; López‐Munguía, Agustín ; Castillo, Edmundo ; Juaristi, Eusebio</creatorcontrib><description>Very recently, several successful enzymatic processes performed with mechanical activation have been disclosed; that is, despite the mechanical stress caused by High‐Speed Ball‐Milling, immobilized enzymes can retain activity. In the present study, the effect of thermal and mechanical stress was examined as potential inducers of enzymatic denaturation, when using either free, immobilized, or ground immobilized enzyme. The recorded observations show a remarkable stability of ground immobilized enzyme. Moreover, ground biocatalyst turns out to exhibit an increase of one order of magnitude in the efficiency of the catalytic process, maintaining excellent enantiodiscrimination, without significant activity loss even after four milling cycles. These observations rule out enzyme inactivation as direct consequence of the milling process. Additionally, boosted enzyme efficiency was used to optimize a relatively inefficient chiral amine resolution reaction, achieving a 25 % faster biotransformation (in 45 min) and yielding essentially enantiopure products (ee&gt;99%, E&gt;500). Beating enzymes for breakfast: For the first time, the effect of grinding over enzyme activity and stability was systematically studied. The results indicate a high enzyme stability to the mechanochemical conditions and, unexpectedly, and increment in enzyme activity of one order of magnitude after the mechanochemical process without loss in enantiopreference of the enzyme.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201901714</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biocatalyst ; Biotransformation ; CALB ; Catalysis ; Deactivation ; Denaturation ; Enzymes ; Lipase ; Mechanoenzymatic ; Mechanostability ; Stability ; Sustainable</subject><ispartof>ChemCatChem, 2020-02, Vol.12 (3), p.803-811</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-d969f1319a74274352962704730ec5791cf1603b7c9f204613ccaf6d02c5b2923</citedby><cites>FETCH-LOGICAL-c3174-d969f1319a74274352962704730ec5791cf1603b7c9f204613ccaf6d02c5b2923</cites><orcidid>0000-0003-0936-7020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pérez‐Venegas, Mario</creatorcontrib><creatorcontrib>Tellez‐Cruz, Miriam M.</creatorcontrib><creatorcontrib>Solorza‐Feria, Omar</creatorcontrib><creatorcontrib>López‐Munguía, Agustín</creatorcontrib><creatorcontrib>Castillo, Edmundo</creatorcontrib><creatorcontrib>Juaristi, Eusebio</creatorcontrib><title>Thermal and Mechanical Stability of Immobilized Candida antarctica Lipase B: an Approximation to Mechanochemical Energetics in Enzyme Catalysis</title><title>ChemCatChem</title><description>Very recently, several successful enzymatic processes performed with mechanical activation have been disclosed; that is, despite the mechanical stress caused by High‐Speed Ball‐Milling, immobilized enzymes can retain activity. In the present study, the effect of thermal and mechanical stress was examined as potential inducers of enzymatic denaturation, when using either free, immobilized, or ground immobilized enzyme. The recorded observations show a remarkable stability of ground immobilized enzyme. Moreover, ground biocatalyst turns out to exhibit an increase of one order of magnitude in the efficiency of the catalytic process, maintaining excellent enantiodiscrimination, without significant activity loss even after four milling cycles. These observations rule out enzyme inactivation as direct consequence of the milling process. Additionally, boosted enzyme efficiency was used to optimize a relatively inefficient chiral amine resolution reaction, achieving a 25 % faster biotransformation (in 45 min) and yielding essentially enantiopure products (ee&gt;99%, E&gt;500). Beating enzymes for breakfast: For the first time, the effect of grinding over enzyme activity and stability was systematically studied. The results indicate a high enzyme stability to the mechanochemical conditions and, unexpectedly, and increment in enzyme activity of one order of magnitude after the mechanochemical process without loss in enantiopreference of the enzyme.</description><subject>Biocatalyst</subject><subject>Biotransformation</subject><subject>CALB</subject><subject>Catalysis</subject><subject>Deactivation</subject><subject>Denaturation</subject><subject>Enzymes</subject><subject>Lipase</subject><subject>Mechanoenzymatic</subject><subject>Mechanostability</subject><subject>Stability</subject><subject>Sustainable</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwyAYxhujiXN69UziuZM_LQxvs5m6ZMaD80wYpY6lLRVYtPsSfmWZW-bREzxvfs8D75Mk1wiOEIT4VqmgRhgiDhFD2UkyQGPKUjLm_PR4H8Pz5ML7NYSUE5YPku_FSrtG1kC2JXjWaiVbo6J8DXJpahN6YCswaxq7U1tdgiKCppSRD9KpEGEwN530GtzfxSGYdJ2zX6aRwdgWBHsItWqlm9_kaavdu45GD0wb1bZvdEwNsu698ZfJWSVrr68O5zB5e5guiqd0_vI4KybzVBHEsrTklFeIIC5ZhllGcswpZjBjBGqVM45UhSgkS6Z4hWFGEVFKVrSEWOVLzDEZJjf73Pjbj432QaztxrXxSYFJjjJKKeORGu0p5az3Tleic3E11wsExa50sStdHEuPBr43fJpa9__QoigWxZ_3B0cjhqE</recordid><startdate>20200206</startdate><enddate>20200206</enddate><creator>Pérez‐Venegas, Mario</creator><creator>Tellez‐Cruz, Miriam M.</creator><creator>Solorza‐Feria, Omar</creator><creator>López‐Munguía, Agustín</creator><creator>Castillo, Edmundo</creator><creator>Juaristi, Eusebio</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0936-7020</orcidid></search><sort><creationdate>20200206</creationdate><title>Thermal and Mechanical Stability of Immobilized Candida antarctica Lipase B: an Approximation to Mechanochemical Energetics in Enzyme Catalysis</title><author>Pérez‐Venegas, Mario ; Tellez‐Cruz, Miriam M. ; Solorza‐Feria, Omar ; López‐Munguía, Agustín ; Castillo, Edmundo ; Juaristi, Eusebio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-d969f1319a74274352962704730ec5791cf1603b7c9f204613ccaf6d02c5b2923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocatalyst</topic><topic>Biotransformation</topic><topic>CALB</topic><topic>Catalysis</topic><topic>Deactivation</topic><topic>Denaturation</topic><topic>Enzymes</topic><topic>Lipase</topic><topic>Mechanoenzymatic</topic><topic>Mechanostability</topic><topic>Stability</topic><topic>Sustainable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez‐Venegas, Mario</creatorcontrib><creatorcontrib>Tellez‐Cruz, Miriam M.</creatorcontrib><creatorcontrib>Solorza‐Feria, Omar</creatorcontrib><creatorcontrib>López‐Munguía, Agustín</creatorcontrib><creatorcontrib>Castillo, Edmundo</creatorcontrib><creatorcontrib>Juaristi, Eusebio</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez‐Venegas, Mario</au><au>Tellez‐Cruz, Miriam M.</au><au>Solorza‐Feria, Omar</au><au>López‐Munguía, Agustín</au><au>Castillo, Edmundo</au><au>Juaristi, Eusebio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and Mechanical Stability of Immobilized Candida antarctica Lipase B: an Approximation to Mechanochemical Energetics in Enzyme Catalysis</atitle><jtitle>ChemCatChem</jtitle><date>2020-02-06</date><risdate>2020</risdate><volume>12</volume><issue>3</issue><spage>803</spage><epage>811</epage><pages>803-811</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Very recently, several successful enzymatic processes performed with mechanical activation have been disclosed; that is, despite the mechanical stress caused by High‐Speed Ball‐Milling, immobilized enzymes can retain activity. In the present study, the effect of thermal and mechanical stress was examined as potential inducers of enzymatic denaturation, when using either free, immobilized, or ground immobilized enzyme. The recorded observations show a remarkable stability of ground immobilized enzyme. Moreover, ground biocatalyst turns out to exhibit an increase of one order of magnitude in the efficiency of the catalytic process, maintaining excellent enantiodiscrimination, without significant activity loss even after four milling cycles. These observations rule out enzyme inactivation as direct consequence of the milling process. Additionally, boosted enzyme efficiency was used to optimize a relatively inefficient chiral amine resolution reaction, achieving a 25 % faster biotransformation (in 45 min) and yielding essentially enantiopure products (ee&gt;99%, E&gt;500). Beating enzymes for breakfast: For the first time, the effect of grinding over enzyme activity and stability was systematically studied. The results indicate a high enzyme stability to the mechanochemical conditions and, unexpectedly, and increment in enzyme activity of one order of magnitude after the mechanochemical process without loss in enantiopreference of the enzyme.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.201901714</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0936-7020</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2020-02, Vol.12 (3), p.803-811
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_2351466679
source Wiley-Blackwell Read & Publish Collection
subjects Biocatalyst
Biotransformation
CALB
Catalysis
Deactivation
Denaturation
Enzymes
Lipase
Mechanoenzymatic
Mechanostability
Stability
Sustainable
title Thermal and Mechanical Stability of Immobilized Candida antarctica Lipase B: an Approximation to Mechanochemical Energetics in Enzyme Catalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20Mechanical%20Stability%20of%20Immobilized%20Candida%20antarctica%20Lipase%20B:%20an%20Approximation%20to%20Mechanochemical%20Energetics%20in%20Enzyme%20Catalysis&rft.jtitle=ChemCatChem&rft.au=P%C3%A9rez%E2%80%90Venegas,%20Mario&rft.date=2020-02-06&rft.volume=12&rft.issue=3&rft.spage=803&rft.epage=811&rft.pages=803-811&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201901714&rft_dat=%3Cproquest_cross%3E2351466679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3174-d969f1319a74274352962704730ec5791cf1603b7c9f204613ccaf6d02c5b2923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2351466679&rft_id=info:pmid/&rfr_iscdi=true