Loading…
Facile synthesis of palladium-decorated three-dimensional conducting polymer nanofilm for highly sensitive H2 gas sensor
Hydrogen gas is a topic of considerable interest because of its critical importance to various applications in the fuel cell, aerospace and automotive industries. However, because it is highly flammable at low concentrations and causes asphyxiation at higher concentrations, it is crucial to implemen...
Saved in:
Published in: | Journal of materials science 2020-04, Vol.55 (12), p.5156-5165 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hydrogen gas is a topic of considerable interest because of its critical importance to various applications in the fuel cell, aerospace and automotive industries. However, because it is highly flammable at low concentrations and causes asphyxiation at higher concentrations, it is crucial to implement an appropriate system to monitor hydrogen gas. In this report, we illustrate the facile synthesis of palladium-decorated three-dimensional conducting polymer nanofilms (PPyPds) for the detection of hydrogen gas. PPyPds are formed directly on the electrode through a modified electrodeposition process. The resulting PPyPd-based sensor is highly sensitive (down to 5 ppm) and binds hydrogen reversibly at ambient conditions, owing to the uniform distribution of palladium on the three-dimensional polypyrrole surface. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-020-04370-7 |