Loading…

Compensation of Contour Distortion in Stretch-Flanging Metal Sheets

Stretch-flanging commonly appears at the concave edge of the panel part. Sheet thickness tends to decrease at the center of flange attributed to the outflow of metal flow, and hence causes a radial shrinking of the material. This shrinking pulls the ends of the flange and makes the adjacent surface...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2020-02, Vol.830, p.29-35
Main Authors: Hsu, Yi Wei, Lin, Lian Yu, Huang, Ting En, Lin, Heng Sheng, Ke, Jyun Yi
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2689-98a50fff86869e4cab728bc47e6f29587ce39d5a0976e12aee0fbee7f715767b3
cites
container_end_page 35
container_issue
container_start_page 29
container_title Key engineering materials
container_volume 830
creator Hsu, Yi Wei
Lin, Lian Yu
Huang, Ting En
Lin, Heng Sheng
Ke, Jyun Yi
description Stretch-flanging commonly appears at the concave edge of the panel part. Sheet thickness tends to decrease at the center of flange attributed to the outflow of metal flow, and hence causes a radial shrinking of the material. This shrinking pulls the ends of the flange and makes the adjacent surface overcrown. In this paper the effect of punch profiles on a laboratory scale profile, which assimilates the front fender part adjoining the head light, was investigated for the stretch-flanging process. Both the concave and convex punch profiles were considered. SUS 304 stainless steel sheet of 0.6 mm thick was used as the model metal sheet. DynaForm software was used in simulating the stretch flanging process and followed by experimental verification. The results show that a depression angle of 4.4° and an elevation angle 2.6° can produce lowest crown-contour for the concave and convex punches, respectively. The concave punch also causes less thinning at the flange center which makes it a favorable solution than that of the convex punch.
doi_str_mv 10.4028/www.scientific.net/KEM.830.29
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352172134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352172134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2689-98a50fff86869e4cab728bc47e6f29587ce39d5a0976e12aee0fbee7f715767b3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKv_YUE87jbJ7ubjICJrq2KLh-o5ZOOk3dJma5JS_PdGK_TqaYbh_RgehG4ILipMxWi_3xfBdOBiZztTOIijl_GsECUuqDxBA8IYzSWX9WnaMSlzKSg7RxchrDAuiSD1ADVNv9mCCzp2vct6mzW9i_3OZw9diL3_vXYum0cP0SzzyVq7RecW2QyiXmfzJUAMl-jM6nWAq785RO-T8VvzlE9fH5-b-2luKBMytesaW2sFE0xCZXTLqWhNxYFZKmvBDZTyo9ZYcgaEagBsWwBuOak54205RNeH3K3vP3cQolqlT12qVLSsKeGUlFVS3R5UxvcheLBq67uN9l-KYPXDTSVu6shNJW4qcVOJm6Iy-e8O_ui1CxHM8ljzv4RvPF1_IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352172134</pqid></control><display><type>article</type><title>Compensation of Contour Distortion in Stretch-Flanging Metal Sheets</title><source>Scientific.net Journals</source><creator>Hsu, Yi Wei ; Lin, Lian Yu ; Huang, Ting En ; Lin, Heng Sheng ; Ke, Jyun Yi</creator><creatorcontrib>Hsu, Yi Wei ; Lin, Lian Yu ; Huang, Ting En ; Lin, Heng Sheng ; Ke, Jyun Yi</creatorcontrib><description>Stretch-flanging commonly appears at the concave edge of the panel part. Sheet thickness tends to decrease at the center of flange attributed to the outflow of metal flow, and hence causes a radial shrinking of the material. This shrinking pulls the ends of the flange and makes the adjacent surface overcrown. In this paper the effect of punch profiles on a laboratory scale profile, which assimilates the front fender part adjoining the head light, was investigated for the stretch-flanging process. Both the concave and convex punch profiles were considered. SUS 304 stainless steel sheet of 0.6 mm thick was used as the model metal sheet. DynaForm software was used in simulating the stretch flanging process and followed by experimental verification. The results show that a depression angle of 4.4° and an elevation angle 2.6° can produce lowest crown-contour for the concave and convex punches, respectively. The concave punch also causes less thinning at the flange center which makes it a favorable solution than that of the convex punch.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.830.29</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Austenitic stainless steels ; Computer simulation ; Contours ; Elevation angle ; Fenders ; Flanging ; Headlights ; Metal sheets ; Punches ; Shape</subject><ispartof>Key engineering materials, 2020-02, Vol.830, p.29-35</ispartof><rights>2020 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2689-98a50fff86869e4cab728bc47e6f29587ce39d5a0976e12aee0fbee7f715767b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/6024?width=600</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Hsu, Yi Wei</creatorcontrib><creatorcontrib>Lin, Lian Yu</creatorcontrib><creatorcontrib>Huang, Ting En</creatorcontrib><creatorcontrib>Lin, Heng Sheng</creatorcontrib><creatorcontrib>Ke, Jyun Yi</creatorcontrib><title>Compensation of Contour Distortion in Stretch-Flanging Metal Sheets</title><title>Key engineering materials</title><description>Stretch-flanging commonly appears at the concave edge of the panel part. Sheet thickness tends to decrease at the center of flange attributed to the outflow of metal flow, and hence causes a radial shrinking of the material. This shrinking pulls the ends of the flange and makes the adjacent surface overcrown. In this paper the effect of punch profiles on a laboratory scale profile, which assimilates the front fender part adjoining the head light, was investigated for the stretch-flanging process. Both the concave and convex punch profiles were considered. SUS 304 stainless steel sheet of 0.6 mm thick was used as the model metal sheet. DynaForm software was used in simulating the stretch flanging process and followed by experimental verification. The results show that a depression angle of 4.4° and an elevation angle 2.6° can produce lowest crown-contour for the concave and convex punches, respectively. The concave punch also causes less thinning at the flange center which makes it a favorable solution than that of the convex punch.</description><subject>Austenitic stainless steels</subject><subject>Computer simulation</subject><subject>Contours</subject><subject>Elevation angle</subject><subject>Fenders</subject><subject>Flanging</subject><subject>Headlights</subject><subject>Metal sheets</subject><subject>Punches</subject><subject>Shape</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKv_YUE87jbJ7ubjICJrq2KLh-o5ZOOk3dJma5JS_PdGK_TqaYbh_RgehG4ILipMxWi_3xfBdOBiZztTOIijl_GsECUuqDxBA8IYzSWX9WnaMSlzKSg7RxchrDAuiSD1ADVNv9mCCzp2vct6mzW9i_3OZw9diL3_vXYum0cP0SzzyVq7RecW2QyiXmfzJUAMl-jM6nWAq785RO-T8VvzlE9fH5-b-2luKBMytesaW2sFE0xCZXTLqWhNxYFZKmvBDZTyo9ZYcgaEagBsWwBuOak54205RNeH3K3vP3cQolqlT12qVLSsKeGUlFVS3R5UxvcheLBq67uN9l-KYPXDTSVu6shNJW4qcVOJm6Iy-e8O_ui1CxHM8ljzv4RvPF1_IQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Hsu, Yi Wei</creator><creator>Lin, Lian Yu</creator><creator>Huang, Ting En</creator><creator>Lin, Heng Sheng</creator><creator>Ke, Jyun Yi</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20200201</creationdate><title>Compensation of Contour Distortion in Stretch-Flanging Metal Sheets</title><author>Hsu, Yi Wei ; Lin, Lian Yu ; Huang, Ting En ; Lin, Heng Sheng ; Ke, Jyun Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2689-98a50fff86869e4cab728bc47e6f29587ce39d5a0976e12aee0fbee7f715767b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Austenitic stainless steels</topic><topic>Computer simulation</topic><topic>Contours</topic><topic>Elevation angle</topic><topic>Fenders</topic><topic>Flanging</topic><topic>Headlights</topic><topic>Metal sheets</topic><topic>Punches</topic><topic>Shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Yi Wei</creatorcontrib><creatorcontrib>Lin, Lian Yu</creatorcontrib><creatorcontrib>Huang, Ting En</creatorcontrib><creatorcontrib>Lin, Heng Sheng</creatorcontrib><creatorcontrib>Ke, Jyun Yi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Yi Wei</au><au>Lin, Lian Yu</au><au>Huang, Ting En</au><au>Lin, Heng Sheng</au><au>Ke, Jyun Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compensation of Contour Distortion in Stretch-Flanging Metal Sheets</atitle><jtitle>Key engineering materials</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>830</volume><spage>29</spage><epage>35</epage><pages>29-35</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>Stretch-flanging commonly appears at the concave edge of the panel part. Sheet thickness tends to decrease at the center of flange attributed to the outflow of metal flow, and hence causes a radial shrinking of the material. This shrinking pulls the ends of the flange and makes the adjacent surface overcrown. In this paper the effect of punch profiles on a laboratory scale profile, which assimilates the front fender part adjoining the head light, was investigated for the stretch-flanging process. Both the concave and convex punch profiles were considered. SUS 304 stainless steel sheet of 0.6 mm thick was used as the model metal sheet. DynaForm software was used in simulating the stretch flanging process and followed by experimental verification. The results show that a depression angle of 4.4° and an elevation angle 2.6° can produce lowest crown-contour for the concave and convex punches, respectively. The concave punch also causes less thinning at the flange center which makes it a favorable solution than that of the convex punch.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.830.29</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2020-02, Vol.830, p.29-35
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_journals_2352172134
source Scientific.net Journals
subjects Austenitic stainless steels
Computer simulation
Contours
Elevation angle
Fenders
Flanging
Headlights
Metal sheets
Punches
Shape
title Compensation of Contour Distortion in Stretch-Flanging Metal Sheets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T04%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compensation%20of%20Contour%20Distortion%20in%20Stretch-Flanging%20Metal%20Sheets&rft.jtitle=Key%20engineering%20materials&rft.au=Hsu,%20Yi%20Wei&rft.date=2020-02-01&rft.volume=830&rft.spage=29&rft.epage=35&rft.pages=29-35&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.830.29&rft_dat=%3Cproquest_cross%3E2352172134%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2689-98a50fff86869e4cab728bc47e6f29587ce39d5a0976e12aee0fbee7f715767b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2352172134&rft_id=info:pmid/&rfr_iscdi=true