Loading…
Compensation of Contour Distortion in Stretch-Flanging Metal Sheets
Stretch-flanging commonly appears at the concave edge of the panel part. Sheet thickness tends to decrease at the center of flange attributed to the outflow of metal flow, and hence causes a radial shrinking of the material. This shrinking pulls the ends of the flange and makes the adjacent surface...
Saved in:
Published in: | Key engineering materials 2020-02, Vol.830, p.29-35 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2689-98a50fff86869e4cab728bc47e6f29587ce39d5a0976e12aee0fbee7f715767b3 |
---|---|
cites | |
container_end_page | 35 |
container_issue | |
container_start_page | 29 |
container_title | Key engineering materials |
container_volume | 830 |
creator | Hsu, Yi Wei Lin, Lian Yu Huang, Ting En Lin, Heng Sheng Ke, Jyun Yi |
description | Stretch-flanging commonly appears at the concave edge of the panel part. Sheet thickness tends to decrease at the center of flange attributed to the outflow of metal flow, and hence causes a radial shrinking of the material. This shrinking pulls the ends of the flange and makes the adjacent surface overcrown. In this paper the effect of punch profiles on a laboratory scale profile, which assimilates the front fender part adjoining the head light, was investigated for the stretch-flanging process. Both the concave and convex punch profiles were considered. SUS 304 stainless steel sheet of 0.6 mm thick was used as the model metal sheet. DynaForm software was used in simulating the stretch flanging process and followed by experimental verification. The results show that a depression angle of 4.4° and an elevation angle 2.6° can produce lowest crown-contour for the concave and convex punches, respectively. The concave punch also causes less thinning at the flange center which makes it a favorable solution than that of the convex punch. |
doi_str_mv | 10.4028/www.scientific.net/KEM.830.29 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2352172134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352172134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2689-98a50fff86869e4cab728bc47e6f29587ce39d5a0976e12aee0fbee7f715767b3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKv_YUE87jbJ7ubjICJrq2KLh-o5ZOOk3dJma5JS_PdGK_TqaYbh_RgehG4ILipMxWi_3xfBdOBiZztTOIijl_GsECUuqDxBA8IYzSWX9WnaMSlzKSg7RxchrDAuiSD1ADVNv9mCCzp2vct6mzW9i_3OZw9diL3_vXYum0cP0SzzyVq7RecW2QyiXmfzJUAMl-jM6nWAq785RO-T8VvzlE9fH5-b-2luKBMytesaW2sFE0xCZXTLqWhNxYFZKmvBDZTyo9ZYcgaEagBsWwBuOak54205RNeH3K3vP3cQolqlT12qVLSsKeGUlFVS3R5UxvcheLBq67uN9l-KYPXDTSVu6shNJW4qcVOJm6Iy-e8O_ui1CxHM8ljzv4RvPF1_IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352172134</pqid></control><display><type>article</type><title>Compensation of Contour Distortion in Stretch-Flanging Metal Sheets</title><source>Scientific.net Journals</source><creator>Hsu, Yi Wei ; Lin, Lian Yu ; Huang, Ting En ; Lin, Heng Sheng ; Ke, Jyun Yi</creator><creatorcontrib>Hsu, Yi Wei ; Lin, Lian Yu ; Huang, Ting En ; Lin, Heng Sheng ; Ke, Jyun Yi</creatorcontrib><description>Stretch-flanging commonly appears at the concave edge of the panel part. Sheet thickness tends to decrease at the center of flange attributed to the outflow of metal flow, and hence causes a radial shrinking of the material. This shrinking pulls the ends of the flange and makes the adjacent surface overcrown. In this paper the effect of punch profiles on a laboratory scale profile, which assimilates the front fender part adjoining the head light, was investigated for the stretch-flanging process. Both the concave and convex punch profiles were considered. SUS 304 stainless steel sheet of 0.6 mm thick was used as the model metal sheet. DynaForm software was used in simulating the stretch flanging process and followed by experimental verification. The results show that a depression angle of 4.4° and an elevation angle 2.6° can produce lowest crown-contour for the concave and convex punches, respectively. The concave punch also causes less thinning at the flange center which makes it a favorable solution than that of the convex punch.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.830.29</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Austenitic stainless steels ; Computer simulation ; Contours ; Elevation angle ; Fenders ; Flanging ; Headlights ; Metal sheets ; Punches ; Shape</subject><ispartof>Key engineering materials, 2020-02, Vol.830, p.29-35</ispartof><rights>2020 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2689-98a50fff86869e4cab728bc47e6f29587ce39d5a0976e12aee0fbee7f715767b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/6024?width=600</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Hsu, Yi Wei</creatorcontrib><creatorcontrib>Lin, Lian Yu</creatorcontrib><creatorcontrib>Huang, Ting En</creatorcontrib><creatorcontrib>Lin, Heng Sheng</creatorcontrib><creatorcontrib>Ke, Jyun Yi</creatorcontrib><title>Compensation of Contour Distortion in Stretch-Flanging Metal Sheets</title><title>Key engineering materials</title><description>Stretch-flanging commonly appears at the concave edge of the panel part. Sheet thickness tends to decrease at the center of flange attributed to the outflow of metal flow, and hence causes a radial shrinking of the material. This shrinking pulls the ends of the flange and makes the adjacent surface overcrown. In this paper the effect of punch profiles on a laboratory scale profile, which assimilates the front fender part adjoining the head light, was investigated for the stretch-flanging process. Both the concave and convex punch profiles were considered. SUS 304 stainless steel sheet of 0.6 mm thick was used as the model metal sheet. DynaForm software was used in simulating the stretch flanging process and followed by experimental verification. The results show that a depression angle of 4.4° and an elevation angle 2.6° can produce lowest crown-contour for the concave and convex punches, respectively. The concave punch also causes less thinning at the flange center which makes it a favorable solution than that of the convex punch.</description><subject>Austenitic stainless steels</subject><subject>Computer simulation</subject><subject>Contours</subject><subject>Elevation angle</subject><subject>Fenders</subject><subject>Flanging</subject><subject>Headlights</subject><subject>Metal sheets</subject><subject>Punches</subject><subject>Shape</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKv_YUE87jbJ7ubjICJrq2KLh-o5ZOOk3dJma5JS_PdGK_TqaYbh_RgehG4ILipMxWi_3xfBdOBiZztTOIijl_GsECUuqDxBA8IYzSWX9WnaMSlzKSg7RxchrDAuiSD1ADVNv9mCCzp2vct6mzW9i_3OZw9diL3_vXYum0cP0SzzyVq7RecW2QyiXmfzJUAMl-jM6nWAq785RO-T8VvzlE9fH5-b-2luKBMytesaW2sFE0xCZXTLqWhNxYFZKmvBDZTyo9ZYcgaEagBsWwBuOak54205RNeH3K3vP3cQolqlT12qVLSsKeGUlFVS3R5UxvcheLBq67uN9l-KYPXDTSVu6shNJW4qcVOJm6Iy-e8O_ui1CxHM8ljzv4RvPF1_IQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Hsu, Yi Wei</creator><creator>Lin, Lian Yu</creator><creator>Huang, Ting En</creator><creator>Lin, Heng Sheng</creator><creator>Ke, Jyun Yi</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20200201</creationdate><title>Compensation of Contour Distortion in Stretch-Flanging Metal Sheets</title><author>Hsu, Yi Wei ; Lin, Lian Yu ; Huang, Ting En ; Lin, Heng Sheng ; Ke, Jyun Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2689-98a50fff86869e4cab728bc47e6f29587ce39d5a0976e12aee0fbee7f715767b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Austenitic stainless steels</topic><topic>Computer simulation</topic><topic>Contours</topic><topic>Elevation angle</topic><topic>Fenders</topic><topic>Flanging</topic><topic>Headlights</topic><topic>Metal sheets</topic><topic>Punches</topic><topic>Shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Yi Wei</creatorcontrib><creatorcontrib>Lin, Lian Yu</creatorcontrib><creatorcontrib>Huang, Ting En</creatorcontrib><creatorcontrib>Lin, Heng Sheng</creatorcontrib><creatorcontrib>Ke, Jyun Yi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Yi Wei</au><au>Lin, Lian Yu</au><au>Huang, Ting En</au><au>Lin, Heng Sheng</au><au>Ke, Jyun Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compensation of Contour Distortion in Stretch-Flanging Metal Sheets</atitle><jtitle>Key engineering materials</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>830</volume><spage>29</spage><epage>35</epage><pages>29-35</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>Stretch-flanging commonly appears at the concave edge of the panel part. Sheet thickness tends to decrease at the center of flange attributed to the outflow of metal flow, and hence causes a radial shrinking of the material. This shrinking pulls the ends of the flange and makes the adjacent surface overcrown. In this paper the effect of punch profiles on a laboratory scale profile, which assimilates the front fender part adjoining the head light, was investigated for the stretch-flanging process. Both the concave and convex punch profiles were considered. SUS 304 stainless steel sheet of 0.6 mm thick was used as the model metal sheet. DynaForm software was used in simulating the stretch flanging process and followed by experimental verification. The results show that a depression angle of 4.4° and an elevation angle 2.6° can produce lowest crown-contour for the concave and convex punches, respectively. The concave punch also causes less thinning at the flange center which makes it a favorable solution than that of the convex punch.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.830.29</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1013-9826 |
ispartof | Key engineering materials, 2020-02, Vol.830, p.29-35 |
issn | 1013-9826 1662-9795 1662-9795 |
language | eng |
recordid | cdi_proquest_journals_2352172134 |
source | Scientific.net Journals |
subjects | Austenitic stainless steels Computer simulation Contours Elevation angle Fenders Flanging Headlights Metal sheets Punches Shape |
title | Compensation of Contour Distortion in Stretch-Flanging Metal Sheets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T04%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compensation%20of%20Contour%20Distortion%20in%20Stretch-Flanging%20Metal%20Sheets&rft.jtitle=Key%20engineering%20materials&rft.au=Hsu,%20Yi%20Wei&rft.date=2020-02-01&rft.volume=830&rft.spage=29&rft.epage=35&rft.pages=29-35&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.830.29&rft_dat=%3Cproquest_cross%3E2352172134%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2689-98a50fff86869e4cab728bc47e6f29587ce39d5a0976e12aee0fbee7f715767b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2352172134&rft_id=info:pmid/&rfr_iscdi=true |