Loading…

Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation

Research addressing the diffusion of successive generations of technological innovations has generally ignored the impact of marketing-mix variables. As a result, there have been several calls for the development of multiple-generation models that incorporate marketing-mix variables. The authors dev...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marketing research 2001-11, Vol.38 (4), p.501-514
Main Authors: Danaher, Peter J., Bruce G. S. Hardie, Putsis, William P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-45d88c62690dd11cdd03c72d87598b3d9d3e40a85f600934c238413f936d5f743
cites cdi_FETCH-LOGICAL-c323t-45d88c62690dd11cdd03c72d87598b3d9d3e40a85f600934c238413f936d5f743
container_end_page 514
container_issue 4
container_start_page 501
container_title Journal of marketing research
container_volume 38
creator Danaher, Peter J.
Bruce G. S. Hardie
Putsis, William P.
description Research addressing the diffusion of successive generations of technological innovations has generally ignored the impact of marketing-mix variables. As a result, there have been several calls for the development of multiple-generation models that incorporate marketing-mix variables. The authors develop a model of first-time sales and subscriptions for successive generations of a technological innovation, which explicity captures the effects of marketing-mix variables through a proportional hazards framework. The empirical analysis estimates the impact of price for two generations of cellular telephones in a European country. The results suggest that there are important substantive insights to be gained from the parameter estimates for this marketing-mix variable when intergenerational interdependencies are considered. For example, although the time path of the estimated price elasticities in a multiple-generation setting closely follows those reported previously for single generations, the authors find evidence of an important interaction in price response across generations. Therefore, empirical estimates in single-generation models may be missing an important part of the pricing equation.
doi_str_mv 10.1509/jmkr.38.4.501.18907
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_235219055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1558615</jstor_id><sourcerecordid>1558615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-45d88c62690dd11cdd03c72d87598b3d9d3e40a85f600934c238413f936d5f743</originalsourceid><addsrcrecordid>eNpFkE1PAjEQhhujiYj-Aj003ndtO-1uezSoSALxIHptStuF5WOL7UL037uAiXOZw_O-M8mD0C0lORVEPSw3q5iDzHkuCM2pVKQ8Qz0qeJmVVME56hHCWMY4lJfoKqUl6YaSsofMxMSVb-tmnk3qb_xpYm1ma5-waRxuFx4_1VW1S3VocKjw-85an1K993joGx9N24F0IAZPvV00YR3mtTVrPGqasD_ia3RRmXXyN3-7jz5enqeD12z8NhwNHseZBQZtxoWT0hasUMQ5Sq1zBGzJnCyFkjNwyoHnxEhRFYQo4JaB5BQqBYUTVcmhj-5Pd7cxfO18avUy7GLTvdQMBKOKCNGF4BSyMaQUfaW3sd6Y-KMp0QeV-qBSg9Rcdyr1UWXXuju1lqkN8b8ihCyogF93tHFj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235219055</pqid></control><display><type>article</type><title>Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation</title><source>Nexis UK</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>BSC - Ebsco (Business Source Ultimate)</source><source>SAGE</source><creator>Danaher, Peter J. ; Bruce G. S. Hardie ; Putsis, William P.</creator><creatorcontrib>Danaher, Peter J. ; Bruce G. S. Hardie ; Putsis, William P.</creatorcontrib><description>Research addressing the diffusion of successive generations of technological innovations has generally ignored the impact of marketing-mix variables. As a result, there have been several calls for the development of multiple-generation models that incorporate marketing-mix variables. The authors develop a model of first-time sales and subscriptions for successive generations of a technological innovation, which explicity captures the effects of marketing-mix variables through a proportional hazards framework. The empirical analysis estimates the impact of price for two generations of cellular telephones in a European country. The results suggest that there are important substantive insights to be gained from the parameter estimates for this marketing-mix variable when intergenerational interdependencies are considered. For example, although the time path of the estimated price elasticities in a multiple-generation setting closely follows those reported previously for single generations, the authors find evidence of an important interaction in price response across generations. Therefore, empirical estimates in single-generation models may be missing an important part of the pricing equation.</description><identifier>ISSN: 0022-2437</identifier><identifier>EISSN: 1547-7193</identifier><identifier>DOI: 10.1509/jmkr.38.4.501.18907</identifier><identifier>CODEN: JMKRAE</identifier><language>eng</language><publisher>Chicago: American Marketing Association</publisher><subject>Cell phones ; Cellular telephones ; Coefficients ; Consumers ; Digital technology ; Growth rate ; Innovations ; Market prices ; Marketing ; Marketing mixes ; Modeling ; Parametric models ; Price elasticity ; Pricing strategies ; Product development ; Product lines ; Random access memory ; Research Notes and Communications ; Sales ; Satellite television ; Statistical analysis ; Studies ; Subscriptions ; Technological change ; Technological innovation ; Variables</subject><ispartof>Journal of marketing research, 2001-11, Vol.38 (4), p.501-514</ispartof><rights>Copyright 2002 American Marketing Association</rights><rights>Copyright American Marketing Association Nov 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-45d88c62690dd11cdd03c72d87598b3d9d3e40a85f600934c238413f936d5f743</citedby><cites>FETCH-LOGICAL-c323t-45d88c62690dd11cdd03c72d87598b3d9d3e40a85f600934c238413f936d5f743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/235219055/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/235219055?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,11906,27924,27925,36050,36060,44361,44363,58238,58471,74765,74767</link.rule.ids></links><search><creatorcontrib>Danaher, Peter J.</creatorcontrib><creatorcontrib>Bruce G. S. Hardie</creatorcontrib><creatorcontrib>Putsis, William P.</creatorcontrib><title>Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation</title><title>Journal of marketing research</title><description>Research addressing the diffusion of successive generations of technological innovations has generally ignored the impact of marketing-mix variables. As a result, there have been several calls for the development of multiple-generation models that incorporate marketing-mix variables. The authors develop a model of first-time sales and subscriptions for successive generations of a technological innovation, which explicity captures the effects of marketing-mix variables through a proportional hazards framework. The empirical analysis estimates the impact of price for two generations of cellular telephones in a European country. The results suggest that there are important substantive insights to be gained from the parameter estimates for this marketing-mix variable when intergenerational interdependencies are considered. For example, although the time path of the estimated price elasticities in a multiple-generation setting closely follows those reported previously for single generations, the authors find evidence of an important interaction in price response across generations. Therefore, empirical estimates in single-generation models may be missing an important part of the pricing equation.</description><subject>Cell phones</subject><subject>Cellular telephones</subject><subject>Coefficients</subject><subject>Consumers</subject><subject>Digital technology</subject><subject>Growth rate</subject><subject>Innovations</subject><subject>Market prices</subject><subject>Marketing</subject><subject>Marketing mixes</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Price elasticity</subject><subject>Pricing strategies</subject><subject>Product development</subject><subject>Product lines</subject><subject>Random access memory</subject><subject>Research Notes and Communications</subject><subject>Sales</subject><subject>Satellite television</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Subscriptions</subject><subject>Technological change</subject><subject>Technological innovation</subject><subject>Variables</subject><issn>0022-2437</issn><issn>1547-7193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpFkE1PAjEQhhujiYj-Aj003ndtO-1uezSoSALxIHptStuF5WOL7UL037uAiXOZw_O-M8mD0C0lORVEPSw3q5iDzHkuCM2pVKQ8Qz0qeJmVVME56hHCWMY4lJfoKqUl6YaSsofMxMSVb-tmnk3qb_xpYm1ma5-waRxuFx4_1VW1S3VocKjw-85an1K993joGx9N24F0IAZPvV00YR3mtTVrPGqasD_ia3RRmXXyN3-7jz5enqeD12z8NhwNHseZBQZtxoWT0hasUMQ5Sq1zBGzJnCyFkjNwyoHnxEhRFYQo4JaB5BQqBYUTVcmhj-5Pd7cxfO18avUy7GLTvdQMBKOKCNGF4BSyMaQUfaW3sd6Y-KMp0QeV-qBSg9Rcdyr1UWXXuju1lqkN8b8ihCyogF93tHFj</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Danaher, Peter J.</creator><creator>Bruce G. S. Hardie</creator><creator>Putsis, William P.</creator><general>American Marketing Association</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20011101</creationdate><title>Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation</title><author>Danaher, Peter J. ; Bruce G. S. Hardie ; Putsis, William P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-45d88c62690dd11cdd03c72d87598b3d9d3e40a85f600934c238413f936d5f743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Cell phones</topic><topic>Cellular telephones</topic><topic>Coefficients</topic><topic>Consumers</topic><topic>Digital technology</topic><topic>Growth rate</topic><topic>Innovations</topic><topic>Market prices</topic><topic>Marketing</topic><topic>Marketing mixes</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Price elasticity</topic><topic>Pricing strategies</topic><topic>Product development</topic><topic>Product lines</topic><topic>Random access memory</topic><topic>Research Notes and Communications</topic><topic>Sales</topic><topic>Satellite television</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Subscriptions</topic><topic>Technological change</topic><topic>Technological innovation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danaher, Peter J.</creatorcontrib><creatorcontrib>Bruce G. S. Hardie</creatorcontrib><creatorcontrib>Putsis, William P.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Psychology Database (ProQuest)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of marketing research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danaher, Peter J.</au><au>Bruce G. S. Hardie</au><au>Putsis, William P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation</atitle><jtitle>Journal of marketing research</jtitle><date>2001-11-01</date><risdate>2001</risdate><volume>38</volume><issue>4</issue><spage>501</spage><epage>514</epage><pages>501-514</pages><issn>0022-2437</issn><eissn>1547-7193</eissn><coden>JMKRAE</coden><abstract>Research addressing the diffusion of successive generations of technological innovations has generally ignored the impact of marketing-mix variables. As a result, there have been several calls for the development of multiple-generation models that incorporate marketing-mix variables. The authors develop a model of first-time sales and subscriptions for successive generations of a technological innovation, which explicity captures the effects of marketing-mix variables through a proportional hazards framework. The empirical analysis estimates the impact of price for two generations of cellular telephones in a European country. The results suggest that there are important substantive insights to be gained from the parameter estimates for this marketing-mix variable when intergenerational interdependencies are considered. For example, although the time path of the estimated price elasticities in a multiple-generation setting closely follows those reported previously for single generations, the authors find evidence of an important interaction in price response across generations. Therefore, empirical estimates in single-generation models may be missing an important part of the pricing equation.</abstract><cop>Chicago</cop><pub>American Marketing Association</pub><doi>10.1509/jmkr.38.4.501.18907</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2437
ispartof Journal of marketing research, 2001-11, Vol.38 (4), p.501-514
issn 0022-2437
1547-7193
language eng
recordid cdi_proquest_journals_235219055
source Nexis UK; JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; BSC - Ebsco (Business Source Ultimate); SAGE
subjects Cell phones
Cellular telephones
Coefficients
Consumers
Digital technology
Growth rate
Innovations
Market prices
Marketing
Marketing mixes
Modeling
Parametric models
Price elasticity
Pricing strategies
Product development
Product lines
Random access memory
Research Notes and Communications
Sales
Satellite television
Statistical analysis
Studies
Subscriptions
Technological change
Technological innovation
Variables
title Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marketing-Mix%20Variables%20and%20the%20Diffusion%20of%20Successive%20Generations%20of%20a%20Technological%20Innovation&rft.jtitle=Journal%20of%20marketing%20research&rft.au=Danaher,%20Peter%20J.&rft.date=2001-11-01&rft.volume=38&rft.issue=4&rft.spage=501&rft.epage=514&rft.pages=501-514&rft.issn=0022-2437&rft.eissn=1547-7193&rft.coden=JMKRAE&rft_id=info:doi/10.1509/jmkr.38.4.501.18907&rft_dat=%3Cjstor_proqu%3E1558615%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-45d88c62690dd11cdd03c72d87598b3d9d3e40a85f600934c238413f936d5f743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=235219055&rft_id=info:pmid/&rft_jstor_id=1558615&rfr_iscdi=true