Loading…
Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation
Research addressing the diffusion of successive generations of technological innovations has generally ignored the impact of marketing-mix variables. As a result, there have been several calls for the development of multiple-generation models that incorporate marketing-mix variables. The authors dev...
Saved in:
Published in: | Journal of marketing research 2001-11, Vol.38 (4), p.501-514 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c323t-45d88c62690dd11cdd03c72d87598b3d9d3e40a85f600934c238413f936d5f743 |
---|---|
cites | cdi_FETCH-LOGICAL-c323t-45d88c62690dd11cdd03c72d87598b3d9d3e40a85f600934c238413f936d5f743 |
container_end_page | 514 |
container_issue | 4 |
container_start_page | 501 |
container_title | Journal of marketing research |
container_volume | 38 |
creator | Danaher, Peter J. Bruce G. S. Hardie Putsis, William P. |
description | Research addressing the diffusion of successive generations of technological innovations has generally ignored the impact of marketing-mix variables. As a result, there have been several calls for the development of multiple-generation models that incorporate marketing-mix variables. The authors develop a model of first-time sales and subscriptions for successive generations of a technological innovation, which explicity captures the effects of marketing-mix variables through a proportional hazards framework. The empirical analysis estimates the impact of price for two generations of cellular telephones in a European country. The results suggest that there are important substantive insights to be gained from the parameter estimates for this marketing-mix variable when intergenerational interdependencies are considered. For example, although the time path of the estimated price elasticities in a multiple-generation setting closely follows those reported previously for single generations, the authors find evidence of an important interaction in price response across generations. Therefore, empirical estimates in single-generation models may be missing an important part of the pricing equation. |
doi_str_mv | 10.1509/jmkr.38.4.501.18907 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_235219055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1558615</jstor_id><sourcerecordid>1558615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-45d88c62690dd11cdd03c72d87598b3d9d3e40a85f600934c238413f936d5f743</originalsourceid><addsrcrecordid>eNpFkE1PAjEQhhujiYj-Aj003ndtO-1uezSoSALxIHptStuF5WOL7UL037uAiXOZw_O-M8mD0C0lORVEPSw3q5iDzHkuCM2pVKQ8Qz0qeJmVVME56hHCWMY4lJfoKqUl6YaSsofMxMSVb-tmnk3qb_xpYm1ma5-waRxuFx4_1VW1S3VocKjw-85an1K993joGx9N24F0IAZPvV00YR3mtTVrPGqasD_ia3RRmXXyN3-7jz5enqeD12z8NhwNHseZBQZtxoWT0hasUMQ5Sq1zBGzJnCyFkjNwyoHnxEhRFYQo4JaB5BQqBYUTVcmhj-5Pd7cxfO18avUy7GLTvdQMBKOKCNGF4BSyMaQUfaW3sd6Y-KMp0QeV-qBSg9Rcdyr1UWXXuju1lqkN8b8ihCyogF93tHFj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235219055</pqid></control><display><type>article</type><title>Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation</title><source>Nexis UK</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>BSC - Ebsco (Business Source Ultimate)</source><source>SAGE</source><creator>Danaher, Peter J. ; Bruce G. S. Hardie ; Putsis, William P.</creator><creatorcontrib>Danaher, Peter J. ; Bruce G. S. Hardie ; Putsis, William P.</creatorcontrib><description>Research addressing the diffusion of successive generations of technological innovations has generally ignored the impact of marketing-mix variables. As a result, there have been several calls for the development of multiple-generation models that incorporate marketing-mix variables. The authors develop a model of first-time sales and subscriptions for successive generations of a technological innovation, which explicity captures the effects of marketing-mix variables through a proportional hazards framework. The empirical analysis estimates the impact of price for two generations of cellular telephones in a European country. The results suggest that there are important substantive insights to be gained from the parameter estimates for this marketing-mix variable when intergenerational interdependencies are considered. For example, although the time path of the estimated price elasticities in a multiple-generation setting closely follows those reported previously for single generations, the authors find evidence of an important interaction in price response across generations. Therefore, empirical estimates in single-generation models may be missing an important part of the pricing equation.</description><identifier>ISSN: 0022-2437</identifier><identifier>EISSN: 1547-7193</identifier><identifier>DOI: 10.1509/jmkr.38.4.501.18907</identifier><identifier>CODEN: JMKRAE</identifier><language>eng</language><publisher>Chicago: American Marketing Association</publisher><subject>Cell phones ; Cellular telephones ; Coefficients ; Consumers ; Digital technology ; Growth rate ; Innovations ; Market prices ; Marketing ; Marketing mixes ; Modeling ; Parametric models ; Price elasticity ; Pricing strategies ; Product development ; Product lines ; Random access memory ; Research Notes and Communications ; Sales ; Satellite television ; Statistical analysis ; Studies ; Subscriptions ; Technological change ; Technological innovation ; Variables</subject><ispartof>Journal of marketing research, 2001-11, Vol.38 (4), p.501-514</ispartof><rights>Copyright 2002 American Marketing Association</rights><rights>Copyright American Marketing Association Nov 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-45d88c62690dd11cdd03c72d87598b3d9d3e40a85f600934c238413f936d5f743</citedby><cites>FETCH-LOGICAL-c323t-45d88c62690dd11cdd03c72d87598b3d9d3e40a85f600934c238413f936d5f743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/235219055/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/235219055?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,11906,27924,27925,36050,36060,44361,44363,58238,58471,74765,74767</link.rule.ids></links><search><creatorcontrib>Danaher, Peter J.</creatorcontrib><creatorcontrib>Bruce G. S. Hardie</creatorcontrib><creatorcontrib>Putsis, William P.</creatorcontrib><title>Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation</title><title>Journal of marketing research</title><description>Research addressing the diffusion of successive generations of technological innovations has generally ignored the impact of marketing-mix variables. As a result, there have been several calls for the development of multiple-generation models that incorporate marketing-mix variables. The authors develop a model of first-time sales and subscriptions for successive generations of a technological innovation, which explicity captures the effects of marketing-mix variables through a proportional hazards framework. The empirical analysis estimates the impact of price for two generations of cellular telephones in a European country. The results suggest that there are important substantive insights to be gained from the parameter estimates for this marketing-mix variable when intergenerational interdependencies are considered. For example, although the time path of the estimated price elasticities in a multiple-generation setting closely follows those reported previously for single generations, the authors find evidence of an important interaction in price response across generations. Therefore, empirical estimates in single-generation models may be missing an important part of the pricing equation.</description><subject>Cell phones</subject><subject>Cellular telephones</subject><subject>Coefficients</subject><subject>Consumers</subject><subject>Digital technology</subject><subject>Growth rate</subject><subject>Innovations</subject><subject>Market prices</subject><subject>Marketing</subject><subject>Marketing mixes</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Price elasticity</subject><subject>Pricing strategies</subject><subject>Product development</subject><subject>Product lines</subject><subject>Random access memory</subject><subject>Research Notes and Communications</subject><subject>Sales</subject><subject>Satellite television</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Subscriptions</subject><subject>Technological change</subject><subject>Technological innovation</subject><subject>Variables</subject><issn>0022-2437</issn><issn>1547-7193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpFkE1PAjEQhhujiYj-Aj003ndtO-1uezSoSALxIHptStuF5WOL7UL037uAiXOZw_O-M8mD0C0lORVEPSw3q5iDzHkuCM2pVKQ8Qz0qeJmVVME56hHCWMY4lJfoKqUl6YaSsofMxMSVb-tmnk3qb_xpYm1ma5-waRxuFx4_1VW1S3VocKjw-85an1K993joGx9N24F0IAZPvV00YR3mtTVrPGqasD_ia3RRmXXyN3-7jz5enqeD12z8NhwNHseZBQZtxoWT0hasUMQ5Sq1zBGzJnCyFkjNwyoHnxEhRFYQo4JaB5BQqBYUTVcmhj-5Pd7cxfO18avUy7GLTvdQMBKOKCNGF4BSyMaQUfaW3sd6Y-KMp0QeV-qBSg9Rcdyr1UWXXuju1lqkN8b8ihCyogF93tHFj</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Danaher, Peter J.</creator><creator>Bruce G. S. Hardie</creator><creator>Putsis, William P.</creator><general>American Marketing Association</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20011101</creationdate><title>Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation</title><author>Danaher, Peter J. ; Bruce G. S. Hardie ; Putsis, William P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-45d88c62690dd11cdd03c72d87598b3d9d3e40a85f600934c238413f936d5f743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Cell phones</topic><topic>Cellular telephones</topic><topic>Coefficients</topic><topic>Consumers</topic><topic>Digital technology</topic><topic>Growth rate</topic><topic>Innovations</topic><topic>Market prices</topic><topic>Marketing</topic><topic>Marketing mixes</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Price elasticity</topic><topic>Pricing strategies</topic><topic>Product development</topic><topic>Product lines</topic><topic>Random access memory</topic><topic>Research Notes and Communications</topic><topic>Sales</topic><topic>Satellite television</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Subscriptions</topic><topic>Technological change</topic><topic>Technological innovation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danaher, Peter J.</creatorcontrib><creatorcontrib>Bruce G. S. Hardie</creatorcontrib><creatorcontrib>Putsis, William P.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Psychology Database (ProQuest)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of marketing research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danaher, Peter J.</au><au>Bruce G. S. Hardie</au><au>Putsis, William P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation</atitle><jtitle>Journal of marketing research</jtitle><date>2001-11-01</date><risdate>2001</risdate><volume>38</volume><issue>4</issue><spage>501</spage><epage>514</epage><pages>501-514</pages><issn>0022-2437</issn><eissn>1547-7193</eissn><coden>JMKRAE</coden><abstract>Research addressing the diffusion of successive generations of technological innovations has generally ignored the impact of marketing-mix variables. As a result, there have been several calls for the development of multiple-generation models that incorporate marketing-mix variables. The authors develop a model of first-time sales and subscriptions for successive generations of a technological innovation, which explicity captures the effects of marketing-mix variables through a proportional hazards framework. The empirical analysis estimates the impact of price for two generations of cellular telephones in a European country. The results suggest that there are important substantive insights to be gained from the parameter estimates for this marketing-mix variable when intergenerational interdependencies are considered. For example, although the time path of the estimated price elasticities in a multiple-generation setting closely follows those reported previously for single generations, the authors find evidence of an important interaction in price response across generations. Therefore, empirical estimates in single-generation models may be missing an important part of the pricing equation.</abstract><cop>Chicago</cop><pub>American Marketing Association</pub><doi>10.1509/jmkr.38.4.501.18907</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2437 |
ispartof | Journal of marketing research, 2001-11, Vol.38 (4), p.501-514 |
issn | 0022-2437 1547-7193 |
language | eng |
recordid | cdi_proquest_journals_235219055 |
source | Nexis UK; JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; BSC - Ebsco (Business Source Ultimate); SAGE |
subjects | Cell phones Cellular telephones Coefficients Consumers Digital technology Growth rate Innovations Market prices Marketing Marketing mixes Modeling Parametric models Price elasticity Pricing strategies Product development Product lines Random access memory Research Notes and Communications Sales Satellite television Statistical analysis Studies Subscriptions Technological change Technological innovation Variables |
title | Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marketing-Mix%20Variables%20and%20the%20Diffusion%20of%20Successive%20Generations%20of%20a%20Technological%20Innovation&rft.jtitle=Journal%20of%20marketing%20research&rft.au=Danaher,%20Peter%20J.&rft.date=2001-11-01&rft.volume=38&rft.issue=4&rft.spage=501&rft.epage=514&rft.pages=501-514&rft.issn=0022-2437&rft.eissn=1547-7193&rft.coden=JMKRAE&rft_id=info:doi/10.1509/jmkr.38.4.501.18907&rft_dat=%3Cjstor_proqu%3E1558615%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-45d88c62690dd11cdd03c72d87598b3d9d3e40a85f600934c238413f936d5f743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=235219055&rft_id=info:pmid/&rft_jstor_id=1558615&rfr_iscdi=true |