Loading…
Towards Semantic Noise Cleansing of Categorical Data based on Semantic Infusion
Semantic Noise affects text analytics activities for the domain-specific industries significantly. It impedes the text understanding which holds prime importance in the critical decision making tasks. In this work, we formalize semantic noise as a sequence of terms that do not contribute to the narr...
Saved in:
Published in: | arXiv.org 2020-02 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Semantic Noise affects text analytics activities for the domain-specific industries significantly. It impedes the text understanding which holds prime importance in the critical decision making tasks. In this work, we formalize semantic noise as a sequence of terms that do not contribute to the narrative of the text. We look beyond the notion of standard statistically-based stop words and consider the semantics of terms to exclude the semantic noise. We present a novel Semantic Infusion technique to associate meta-data with the categorical corpus text and demonstrate its near-lossless nature. Based on this technique, we propose an unsupervised text-preprocessing framework to filter the semantic noise using the context of the terms. Later we present the evaluation results of the proposed framework using a web forum dataset from the automobile-domain. |
---|---|
ISSN: | 2331-8422 |