Loading…
Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization
We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach—Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (...
Saved in:
Published in: | International journal of computer vision 2020-02, Vol.128 (2), p.336-359 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-3da4a8f9ec5dd728cf9d4d7a33c63c272818f62f178b4abfddc1d90cc2416eda3 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-3da4a8f9ec5dd728cf9d4d7a33c63c272818f62f178b4abfddc1d90cc2416eda3 |
container_end_page | 359 |
container_issue | 2 |
container_start_page | 336 |
container_title | International journal of computer vision |
container_volume | 128 |
creator | Selvaraju, Ramprasaath R. Cogswell, Michael Das, Abhishek Vedantam, Ramakrishna Parikh, Devi Batra, Dhruv |
description | We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach—Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say ‘dog’ in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (
e.g.
VGG), (2) CNNs used for structured outputs (
e.g.
captioning), (3) CNNs used in tasks with multi-modal inputs (
e.g.
visual question answering) or reinforcement learning, all
without architectural changes or re-training
. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are robust to adversarial perturbations, (d) are more faithful to the underlying model, and (e) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show that even non-attention based models learn to localize discriminative regions of input image. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names (Bau et al. in Computer vision and pattern recognition, 2017) to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a ‘stronger’ deep network from a ‘weaker’ one even when both make identical predictions. Our code is available at
https://github.com/ramprs/grad-cam/
, along with a demo on CloudCV (Agrawal et al., in: Mobile cloud visual media computing, pp 265–290. Springer, 2015) (
http://gradcam.cloudcv.or |
doi_str_mv | 10.1007/s11263-019-01228-7 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2352397845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A614152459</galeid><sourcerecordid>A614152459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-3da4a8f9ec5dd728cf9d4d7a33c63c272818f62f178b4abfddc1d90cc2416eda3</originalsourceid><addsrcrecordid>eNp9kUtPGzEURq2KSg2hf4DVSF2xcOrnPLoLIYRIoa36YGtd_IgMk3GwJxT66zEZJMQGXVlX-nSObelD6JiSCSWk-pooZSXHhDb5MFbj6gMaUVlxTAWRB2hEGkawLBv6CR2mdEMIYTXjI_RzEcHg2fTyW3Hl0w7aYv6wbaGD3ocuFS6GTXFm7bb4bvt_Id6m4t5D8Sx52_X4FJI1xSpoaP3_vXOEPjpok_38ssfo7_n8z-wCr34slrPpCmsh6x5zAwJq11gtjalYrV1jhKmAc11yzXJCa1cyR6v6WsC1M0ZT0xCtmaClNcDH6Mtw7zaGu51NvboJu9jlJxXjkvGmqoXM1GSg1tBa5TsX-gg6j7Ebr0Nnnc_5tKSCSiZkk4WTN0JmevvQr2GXklr-_vWWZQOrY0gpWqe20W8gPipK1HMtaqhF5VrUvhZVZYkPUspwt7bx9d_vWE86vI6n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352397845</pqid></control><display><type>article</type><title>Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization</title><source>Springer Nature</source><source>ABI/INFORM Global (OCUL)</source><creator>Selvaraju, Ramprasaath R. ; Cogswell, Michael ; Das, Abhishek ; Vedantam, Ramakrishna ; Parikh, Devi ; Batra, Dhruv</creator><creatorcontrib>Selvaraju, Ramprasaath R. ; Cogswell, Michael ; Das, Abhishek ; Vedantam, Ramakrishna ; Parikh, Devi ; Batra, Dhruv</creatorcontrib><description>We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach—Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say ‘dog’ in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (
e.g.
VGG), (2) CNNs used for structured outputs (
e.g.
captioning), (3) CNNs used in tasks with multi-modal inputs (
e.g.
visual question answering) or reinforcement learning, all
without architectural changes or re-training
. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are robust to adversarial perturbations, (d) are more faithful to the underlying model, and (e) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show that even non-attention based models learn to localize discriminative regions of input image. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names (Bau et al. in Computer vision and pattern recognition, 2017) to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a ‘stronger’ deep network from a ‘weaker’ one even when both make identical predictions. Our code is available at
https://github.com/ramprs/grad-cam/
, along with a demo on CloudCV (Agrawal et al., in: Mobile cloud visual media computing, pp 265–290. Springer, 2015) (
http://gradcam.cloudcv.org
) and a video at
http://youtu.be/COjUB9Izk6E
.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-019-01228-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Computer Imaging ; Computer Science ; Computer vision ; Decisions ; Failure modes ; Image classification ; Image Processing and Computer Vision ; Localization ; Machine learning ; Machine vision ; Mapping ; Mobile computing ; Neural networks ; Pattern Recognition ; Pattern Recognition and Graphics ; Predictions ; Questions ; Vision</subject><ispartof>International journal of computer vision, 2020-02, Vol.128 (2), p.336-359</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>International Journal of Computer Vision is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-3da4a8f9ec5dd728cf9d4d7a33c63c272818f62f178b4abfddc1d90cc2416eda3</citedby><cites>FETCH-LOGICAL-c458t-3da4a8f9ec5dd728cf9d4d7a33c63c272818f62f178b4abfddc1d90cc2416eda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2352397845/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2352397845?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml></links><search><creatorcontrib>Selvaraju, Ramprasaath R.</creatorcontrib><creatorcontrib>Cogswell, Michael</creatorcontrib><creatorcontrib>Das, Abhishek</creatorcontrib><creatorcontrib>Vedantam, Ramakrishna</creatorcontrib><creatorcontrib>Parikh, Devi</creatorcontrib><creatorcontrib>Batra, Dhruv</creatorcontrib><title>Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach—Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say ‘dog’ in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (
e.g.
VGG), (2) CNNs used for structured outputs (
e.g.
captioning), (3) CNNs used in tasks with multi-modal inputs (
e.g.
visual question answering) or reinforcement learning, all
without architectural changes or re-training
. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are robust to adversarial perturbations, (d) are more faithful to the underlying model, and (e) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show that even non-attention based models learn to localize discriminative regions of input image. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names (Bau et al. in Computer vision and pattern recognition, 2017) to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a ‘stronger’ deep network from a ‘weaker’ one even when both make identical predictions. Our code is available at
https://github.com/ramprs/grad-cam/
, along with a demo on CloudCV (Agrawal et al., in: Mobile cloud visual media computing, pp 265–290. Springer, 2015) (
http://gradcam.cloudcv.org
) and a video at
http://youtu.be/COjUB9Izk6E
.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Decisions</subject><subject>Failure modes</subject><subject>Image classification</subject><subject>Image Processing and Computer Vision</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Machine vision</subject><subject>Mapping</subject><subject>Mobile computing</subject><subject>Neural networks</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Predictions</subject><subject>Questions</subject><subject>Vision</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kUtPGzEURq2KSg2hf4DVSF2xcOrnPLoLIYRIoa36YGtd_IgMk3GwJxT66zEZJMQGXVlX-nSObelD6JiSCSWk-pooZSXHhDb5MFbj6gMaUVlxTAWRB2hEGkawLBv6CR2mdEMIYTXjI_RzEcHg2fTyW3Hl0w7aYv6wbaGD3ocuFS6GTXFm7bb4bvt_Id6m4t5D8Sx52_X4FJI1xSpoaP3_vXOEPjpok_38ssfo7_n8z-wCr34slrPpCmsh6x5zAwJq11gtjalYrV1jhKmAc11yzXJCa1cyR6v6WsC1M0ZT0xCtmaClNcDH6Mtw7zaGu51NvboJu9jlJxXjkvGmqoXM1GSg1tBa5TsX-gg6j7Ebr0Nnnc_5tKSCSiZkk4WTN0JmevvQr2GXklr-_vWWZQOrY0gpWqe20W8gPipK1HMtaqhF5VrUvhZVZYkPUspwt7bx9d_vWE86vI6n</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Selvaraju, Ramprasaath R.</creator><creator>Cogswell, Michael</creator><creator>Das, Abhishek</creator><creator>Vedantam, Ramakrishna</creator><creator>Parikh, Devi</creator><creator>Batra, Dhruv</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20200201</creationdate><title>Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization</title><author>Selvaraju, Ramprasaath R. ; Cogswell, Michael ; Das, Abhishek ; Vedantam, Ramakrishna ; Parikh, Devi ; Batra, Dhruv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-3da4a8f9ec5dd728cf9d4d7a33c63c272818f62f178b4abfddc1d90cc2416eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Decisions</topic><topic>Failure modes</topic><topic>Image classification</topic><topic>Image Processing and Computer Vision</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Machine vision</topic><topic>Mapping</topic><topic>Mobile computing</topic><topic>Neural networks</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Predictions</topic><topic>Questions</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selvaraju, Ramprasaath R.</creatorcontrib><creatorcontrib>Cogswell, Michael</creatorcontrib><creatorcontrib>Das, Abhishek</creatorcontrib><creatorcontrib>Vedantam, Ramakrishna</creatorcontrib><creatorcontrib>Parikh, Devi</creatorcontrib><creatorcontrib>Batra, Dhruv</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (OCUL)</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business (UW System Shared)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selvaraju, Ramprasaath R.</au><au>Cogswell, Michael</au><au>Das, Abhishek</au><au>Vedantam, Ramakrishna</au><au>Parikh, Devi</au><au>Batra, Dhruv</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>128</volume><issue>2</issue><spage>336</spage><epage>359</epage><pages>336-359</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable. Our approach—Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say ‘dog’ in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (
e.g.
VGG), (2) CNNs used for structured outputs (
e.g.
captioning), (3) CNNs used in tasks with multi-modal inputs (
e.g.
visual question answering) or reinforcement learning, all
without architectural changes or re-training
. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are robust to adversarial perturbations, (d) are more faithful to the underlying model, and (e) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show that even non-attention based models learn to localize discriminative regions of input image. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names (Bau et al. in Computer vision and pattern recognition, 2017) to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a ‘stronger’ deep network from a ‘weaker’ one even when both make identical predictions. Our code is available at
https://github.com/ramprs/grad-cam/
, along with a demo on CloudCV (Agrawal et al., in: Mobile cloud visual media computing, pp 265–290. Springer, 2015) (
http://gradcam.cloudcv.org
) and a video at
http://youtu.be/COjUB9Izk6E
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11263-019-01228-7</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5691 |
ispartof | International journal of computer vision, 2020-02, Vol.128 (2), p.336-359 |
issn | 0920-5691 1573-1405 |
language | eng |
recordid | cdi_proquest_journals_2352397845 |
source | Springer Nature; ABI/INFORM Global (OCUL) |
subjects | Artificial Intelligence Artificial neural networks Computer Imaging Computer Science Computer vision Decisions Failure modes Image classification Image Processing and Computer Vision Localization Machine learning Machine vision Mapping Mobile computing Neural networks Pattern Recognition Pattern Recognition and Graphics Predictions Questions Vision |
title | Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-08T11%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grad-CAM:%20Visual%20Explanations%20from%20Deep%20Networks%20via%20Gradient-Based%20Localization&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Selvaraju,%20Ramprasaath%20R.&rft.date=2020-02-01&rft.volume=128&rft.issue=2&rft.spage=336&rft.epage=359&rft.pages=336-359&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-019-01228-7&rft_dat=%3Cgale_proqu%3EA614152459%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-3da4a8f9ec5dd728cf9d4d7a33c63c272818f62f178b4abfddc1d90cc2416eda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2352397845&rft_id=info:pmid/&rft_galeid=A614152459&rfr_iscdi=true |