Loading…
On Geometry of Vector Fields
It is well known that the study of the geometry and topology of the attainability set of a family of vector fields is one of the main tasks of the qualitative control theory, which is closely related to the geometry of orbits of vector fields. In this paper, we present the authors’ results on the ge...
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-03, Vol.245 (3), p.375-381 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373z-b0573f59ad812aa1a3776636812a601b78b5715ab05046da5d9bcc52d7375fa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c373z-b0573f59ad812aa1a3776636812a601b78b5715ab05046da5d9bcc52d7375fa3 |
container_end_page | 381 |
container_issue | 3 |
container_start_page | 375 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 245 |
creator | Narmanov, A. Ya Saitova, S. S. |
description | It is well known that the study of the geometry and topology of the attainability set of a family of vector fields is one of the main tasks of the qualitative control theory, which is closely related to the geometry of orbits of vector fields. In this paper, we present the authors’ results on the geometry of the attainability set of a family of vector fields: results on the geometry of
T
-attainability sets and the geometry of orbits of Killing vector fields. |
doi_str_mv | 10.1007/s10958-020-04699-z |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2353041126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A617715935</galeid><sourcerecordid>A617715935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373z-b0573f59ad812aa1a3776636812a601b78b5715ab05046da5d9bcc52d7375fa3</originalsourceid><addsrcrecordid>eNp9kU1LwzAAhoMoOKd_QDwUPHnITJolaY5juDkYDHR4DWmalI62mUkHbr_ezAoyGJJDPnievCEvAPcYjTBC_DlgJGgGUYogGjMh4OECDDDlBGZc0Mu4RjyFhPDxNbgJYYOixDIyAA-rNpkb15jO7xNnkw-jO-eTWWXqItyCK6vqYO5-5yFYz17W01e4XM0X08kSasLJAeYoBlkqVJHhVCmsCOeMEXbcMYRznuWUY6oiFx9XKFqIXGuaFpxwahUZgsf-2q13nzsTOrlxO9_GRJkSStAY45T9UaWqjaxa6zqvdFMFLScM8xggIjwE8AxVmtZ4VbvW2Coen_CjM3wchWkqfVZ4OhEi05mvrlS7EOTi_e2UTXtWexeCN1ZufdUov5cYyWNvsu9Nxt7kT2_yECXSSyHCbWn832_8Y30Dy_OVlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353041126</pqid></control><display><type>article</type><title>On Geometry of Vector Fields</title><source>Springer Link</source><creator>Narmanov, A. Ya ; Saitova, S. S.</creator><creatorcontrib>Narmanov, A. Ya ; Saitova, S. S.</creatorcontrib><description>It is well known that the study of the geometry and topology of the attainability set of a family of vector fields is one of the main tasks of the qualitative control theory, which is closely related to the geometry of orbits of vector fields. In this paper, we present the authors’ results on the geometry of the attainability set of a family of vector fields: results on the geometry of
T
-attainability sets and the geometry of orbits of Killing vector fields.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-020-04699-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Control systems ; Control theory ; Family ; Fields (mathematics) ; Geometry ; Mathematics ; Mathematics and Statistics ; Orbits ; Topology</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-03, Vol.245 (3), p.375-381</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373z-b0573f59ad812aa1a3776636812a601b78b5715ab05046da5d9bcc52d7375fa3</citedby><cites>FETCH-LOGICAL-c373z-b0573f59ad812aa1a3776636812a601b78b5715ab05046da5d9bcc52d7375fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Narmanov, A. Ya</creatorcontrib><creatorcontrib>Saitova, S. S.</creatorcontrib><title>On Geometry of Vector Fields</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>It is well known that the study of the geometry and topology of the attainability set of a family of vector fields is one of the main tasks of the qualitative control theory, which is closely related to the geometry of orbits of vector fields. In this paper, we present the authors’ results on the geometry of the attainability set of a family of vector fields: results on the geometry of
T
-attainability sets and the geometry of orbits of Killing vector fields.</description><subject>Control systems</subject><subject>Control theory</subject><subject>Family</subject><subject>Fields (mathematics)</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orbits</subject><subject>Topology</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LwzAAhoMoOKd_QDwUPHnITJolaY5juDkYDHR4DWmalI62mUkHbr_ezAoyGJJDPnievCEvAPcYjTBC_DlgJGgGUYogGjMh4OECDDDlBGZc0Mu4RjyFhPDxNbgJYYOixDIyAA-rNpkb15jO7xNnkw-jO-eTWWXqItyCK6vqYO5-5yFYz17W01e4XM0X08kSasLJAeYoBlkqVJHhVCmsCOeMEXbcMYRznuWUY6oiFx9XKFqIXGuaFpxwahUZgsf-2q13nzsTOrlxO9_GRJkSStAY45T9UaWqjaxa6zqvdFMFLScM8xggIjwE8AxVmtZ4VbvW2Coen_CjM3wchWkqfVZ4OhEi05mvrlS7EOTi_e2UTXtWexeCN1ZufdUov5cYyWNvsu9Nxt7kT2_yECXSSyHCbWn832_8Y30Dy_OVlg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Narmanov, A. Ya</creator><creator>Saitova, S. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200301</creationdate><title>On Geometry of Vector Fields</title><author>Narmanov, A. Ya ; Saitova, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373z-b0573f59ad812aa1a3776636812a601b78b5715ab05046da5d9bcc52d7375fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Control systems</topic><topic>Control theory</topic><topic>Family</topic><topic>Fields (mathematics)</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orbits</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narmanov, A. Ya</creatorcontrib><creatorcontrib>Saitova, S. S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narmanov, A. Ya</au><au>Saitova, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Geometry of Vector Fields</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>245</volume><issue>3</issue><spage>375</spage><epage>381</epage><pages>375-381</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>It is well known that the study of the geometry and topology of the attainability set of a family of vector fields is one of the main tasks of the qualitative control theory, which is closely related to the geometry of orbits of vector fields. In this paper, we present the authors’ results on the geometry of the attainability set of a family of vector fields: results on the geometry of
T
-attainability sets and the geometry of orbits of Killing vector fields.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-020-04699-z</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2020-03, Vol.245 (3), p.375-381 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2353041126 |
source | Springer Link |
subjects | Control systems Control theory Family Fields (mathematics) Geometry Mathematics Mathematics and Statistics Orbits Topology |
title | On Geometry of Vector Fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Geometry%20of%20Vector%20Fields&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Narmanov,%20A.%20Ya&rft.date=2020-03-01&rft.volume=245&rft.issue=3&rft.spage=375&rft.epage=381&rft.pages=375-381&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-020-04699-z&rft_dat=%3Cgale_proqu%3EA617715935%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373z-b0573f59ad812aa1a3776636812a601b78b5715ab05046da5d9bcc52d7375fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2353041126&rft_id=info:pmid/&rft_galeid=A617715935&rfr_iscdi=true |