Loading…

On Geometry of Vector Fields

It is well known that the study of the geometry and topology of the attainability set of a family of vector fields is one of the main tasks of the qualitative control theory, which is closely related to the geometry of orbits of vector fields. In this paper, we present the authors’ results on the ge...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-03, Vol.245 (3), p.375-381
Main Authors: Narmanov, A. Ya, Saitova, S. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373z-b0573f59ad812aa1a3776636812a601b78b5715ab05046da5d9bcc52d7375fa3
cites cdi_FETCH-LOGICAL-c373z-b0573f59ad812aa1a3776636812a601b78b5715ab05046da5d9bcc52d7375fa3
container_end_page 381
container_issue 3
container_start_page 375
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 245
creator Narmanov, A. Ya
Saitova, S. S.
description It is well known that the study of the geometry and topology of the attainability set of a family of vector fields is one of the main tasks of the qualitative control theory, which is closely related to the geometry of orbits of vector fields. In this paper, we present the authors’ results on the geometry of the attainability set of a family of vector fields: results on the geometry of T -attainability sets and the geometry of orbits of Killing vector fields.
doi_str_mv 10.1007/s10958-020-04699-z
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2353041126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A617715935</galeid><sourcerecordid>A617715935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373z-b0573f59ad812aa1a3776636812a601b78b5715ab05046da5d9bcc52d7375fa3</originalsourceid><addsrcrecordid>eNp9kU1LwzAAhoMoOKd_QDwUPHnITJolaY5juDkYDHR4DWmalI62mUkHbr_ezAoyGJJDPnievCEvAPcYjTBC_DlgJGgGUYogGjMh4OECDDDlBGZc0Mu4RjyFhPDxNbgJYYOixDIyAA-rNpkb15jO7xNnkw-jO-eTWWXqItyCK6vqYO5-5yFYz17W01e4XM0X08kSasLJAeYoBlkqVJHhVCmsCOeMEXbcMYRznuWUY6oiFx9XKFqIXGuaFpxwahUZgsf-2q13nzsTOrlxO9_GRJkSStAY45T9UaWqjaxa6zqvdFMFLScM8xggIjwE8AxVmtZ4VbvW2Coen_CjM3wchWkqfVZ4OhEi05mvrlS7EOTi_e2UTXtWexeCN1ZufdUov5cYyWNvsu9Nxt7kT2_yECXSSyHCbWn832_8Y30Dy_OVlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353041126</pqid></control><display><type>article</type><title>On Geometry of Vector Fields</title><source>Springer Link</source><creator>Narmanov, A. Ya ; Saitova, S. S.</creator><creatorcontrib>Narmanov, A. Ya ; Saitova, S. S.</creatorcontrib><description>It is well known that the study of the geometry and topology of the attainability set of a family of vector fields is one of the main tasks of the qualitative control theory, which is closely related to the geometry of orbits of vector fields. In this paper, we present the authors’ results on the geometry of the attainability set of a family of vector fields: results on the geometry of T -attainability sets and the geometry of orbits of Killing vector fields.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-020-04699-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Control systems ; Control theory ; Family ; Fields (mathematics) ; Geometry ; Mathematics ; Mathematics and Statistics ; Orbits ; Topology</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-03, Vol.245 (3), p.375-381</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373z-b0573f59ad812aa1a3776636812a601b78b5715ab05046da5d9bcc52d7375fa3</citedby><cites>FETCH-LOGICAL-c373z-b0573f59ad812aa1a3776636812a601b78b5715ab05046da5d9bcc52d7375fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Narmanov, A. Ya</creatorcontrib><creatorcontrib>Saitova, S. S.</creatorcontrib><title>On Geometry of Vector Fields</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>It is well known that the study of the geometry and topology of the attainability set of a family of vector fields is one of the main tasks of the qualitative control theory, which is closely related to the geometry of orbits of vector fields. In this paper, we present the authors’ results on the geometry of the attainability set of a family of vector fields: results on the geometry of T -attainability sets and the geometry of orbits of Killing vector fields.</description><subject>Control systems</subject><subject>Control theory</subject><subject>Family</subject><subject>Fields (mathematics)</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orbits</subject><subject>Topology</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LwzAAhoMoOKd_QDwUPHnITJolaY5juDkYDHR4DWmalI62mUkHbr_ezAoyGJJDPnievCEvAPcYjTBC_DlgJGgGUYogGjMh4OECDDDlBGZc0Mu4RjyFhPDxNbgJYYOixDIyAA-rNpkb15jO7xNnkw-jO-eTWWXqItyCK6vqYO5-5yFYz17W01e4XM0X08kSasLJAeYoBlkqVJHhVCmsCOeMEXbcMYRznuWUY6oiFx9XKFqIXGuaFpxwahUZgsf-2q13nzsTOrlxO9_GRJkSStAY45T9UaWqjaxa6zqvdFMFLScM8xggIjwE8AxVmtZ4VbvW2Coen_CjM3wchWkqfVZ4OhEi05mvrlS7EOTi_e2UTXtWexeCN1ZufdUov5cYyWNvsu9Nxt7kT2_yECXSSyHCbWn832_8Y30Dy_OVlg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Narmanov, A. Ya</creator><creator>Saitova, S. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200301</creationdate><title>On Geometry of Vector Fields</title><author>Narmanov, A. Ya ; Saitova, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373z-b0573f59ad812aa1a3776636812a601b78b5715ab05046da5d9bcc52d7375fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Control systems</topic><topic>Control theory</topic><topic>Family</topic><topic>Fields (mathematics)</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orbits</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narmanov, A. Ya</creatorcontrib><creatorcontrib>Saitova, S. S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narmanov, A. Ya</au><au>Saitova, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Geometry of Vector Fields</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>245</volume><issue>3</issue><spage>375</spage><epage>381</epage><pages>375-381</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>It is well known that the study of the geometry and topology of the attainability set of a family of vector fields is one of the main tasks of the qualitative control theory, which is closely related to the geometry of orbits of vector fields. In this paper, we present the authors’ results on the geometry of the attainability set of a family of vector fields: results on the geometry of T -attainability sets and the geometry of orbits of Killing vector fields.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-020-04699-z</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2020-03, Vol.245 (3), p.375-381
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2353041126
source Springer Link
subjects Control systems
Control theory
Family
Fields (mathematics)
Geometry
Mathematics
Mathematics and Statistics
Orbits
Topology
title On Geometry of Vector Fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Geometry%20of%20Vector%20Fields&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Narmanov,%20A.%20Ya&rft.date=2020-03-01&rft.volume=245&rft.issue=3&rft.spage=375&rft.epage=381&rft.pages=375-381&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-020-04699-z&rft_dat=%3Cgale_proqu%3EA617715935%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373z-b0573f59ad812aa1a3776636812a601b78b5715ab05046da5d9bcc52d7375fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2353041126&rft_id=info:pmid/&rft_galeid=A617715935&rfr_iscdi=true