Loading…

Exceptional points as lasing pre-thresholds in open-cavity lasers

The genesis of lasing, as an evolution of the laser hybrid eigenstates comprised of electromagnetic modes and atomic polarization, is considered. It is shown that the start of coherent generation at the laser threshold is preceded by the formation of a special hybrid state at the lasing pre-threshol...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-07
Main Authors: Zyablovsky, A A, Doronin, I V, Andrianov, E S, Pukhov, A A, Lozovik, Yu E, Vinogradov, A P, Lisyansky, A A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The genesis of lasing, as an evolution of the laser hybrid eigenstates comprised of electromagnetic modes and atomic polarization, is considered. It is shown that the start of coherent generation at the laser threshold is preceded by the formation of a special hybrid state at the lasing pre-threshold. This special state is characterized by an enhanced coupling among excited atoms and electromagnetic modes. This leads to an increase in the rate of stimulated emission in the special state and, ultimately, to lasing. At the lasing pre-threshold, the transformation of hybrid eigenstates has the features of an exceptional point (EP) observed in non-Hermitian systems. The special state is formed when eigenfrequencies of two hybrid states coalesce or come close to each other. Below the pre-threshold, lifetimes of all hybrid states grow with increasing pump rate. When the pump rate crosses the pre-threshold, resonance trapping occurs with the lifetime of the special state continuing to increase while the lifetimes of all other eigenstates begin to decrease. Consequently, the latter eigenstates do not participate in the lasing. Thus, above the pre-threshold, a laser transitions into the single-mode regime.
ISSN:2331-8422
DOI:10.48550/arxiv.2002.03254