Loading…
White dwarfs as a probe of dark energy
We investigate the radial density distribution of the dynamical dark energy inside the white dwarfs (WDs) and its possible impact on their intrinsic structure. The minimally coupled dark energy with the barotropic equation of state, which has three free parameters (density, equation of state, and ef...
Saved in:
Published in: | Physical review. D 2020-01, Vol.101 (2), p.1, Article 023001 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c227t-9c33c59c19662cb34f6846b04d5b7dc9edc265cc75972b351d265c205104b3543 |
container_end_page | |
container_issue | 2 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 101 |
creator | Smerechynskyi, S. Tsizh, M. Novosyadlyj, B. |
description | We investigate the radial density distribution of the dynamical dark energy inside the white dwarfs (WDs) and its possible impact on their intrinsic structure. The minimally coupled dark energy with the barotropic equation of state, which has three free parameters (density, equation of state, and effective sound speed), is used. We analyze how such dark energy affects the mass-radius relation for the WDs because of its contribution to the joint gravitational potential of the system. For this we use the Chandrasekhar model of the WDs, where model parameters are the parameter of the chemical composition and the relativistic parameter. To evaluate the dark energy distribution inside a WD we solve the conservation equation in the spherical static metric. The obtained distribution is used to find the parameters of dark energy for which the deviation from the Chandrasekhar model mass-radius relation become non-negligible. We conclude also that the absence of observational evidence for the existence of WDs with untypical intrinsic structure (mass-radius relation) gives us lower limits for the value of an effective sound speed of dark energy cs2≳10−4 (in units of speed of light). |
doi_str_mv | 10.1103/PhysRevD.101.023001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2353618676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353618676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-9c33c59c19662cb34f6846b04d5b7dc9edc265cc75972b351d265c205104b3543</originalsourceid><addsrcrecordid>eNo9kN1KAzEQhYMoWGqfwJuA4N2uM_ltLqVqFQqKKF6G3SRrW7Vbk62yb2_KqjAw5wyHmeEj5BShRAR-8bDs02P4uioRsATGAfCAjJjQUAAwc_ivEY7JJKU1ZKnAaMQROX9ZrrpA_XcVm0SrXHQb2zrQtqG-im80bEJ87U_IUVO9pzD57WPyfHP9NLstFvfzu9nlonCM6a4wjnMnjUOjFHM1F42aClWD8LLW3pngHVPSOS2NZjWX6PeWgUQQ2Qo-JmfD3vzE5y6kzq7bXdzkk5ZxyRVOlVY5xYeUi21KMTR2G1cfVewtgt0zsX9M8gDtwIT_AMo2Uuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353618676</pqid></control><display><type>article</type><title>White dwarfs as a probe of dark energy</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Smerechynskyi, S. ; Tsizh, M. ; Novosyadlyj, B.</creator><creatorcontrib>Smerechynskyi, S. ; Tsizh, M. ; Novosyadlyj, B.</creatorcontrib><description>We investigate the radial density distribution of the dynamical dark energy inside the white dwarfs (WDs) and its possible impact on their intrinsic structure. The minimally coupled dark energy with the barotropic equation of state, which has three free parameters (density, equation of state, and effective sound speed), is used. We analyze how such dark energy affects the mass-radius relation for the WDs because of its contribution to the joint gravitational potential of the system. For this we use the Chandrasekhar model of the WDs, where model parameters are the parameter of the chemical composition and the relativistic parameter. To evaluate the dark energy distribution inside a WD we solve the conservation equation in the spherical static metric. The obtained distribution is used to find the parameters of dark energy for which the deviation from the Chandrasekhar model mass-radius relation become non-negligible. We conclude also that the absence of observational evidence for the existence of WDs with untypical intrinsic structure (mass-radius relation) gives us lower limits for the value of an effective sound speed of dark energy cs2≳10−4 (in units of speed of light).</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.101.023001</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Chemical composition ; Conservation equations ; Dark energy ; Density distribution ; Energy conservation ; Energy distribution ; Equations of state ; Light speed ; Mathematical models ; Organic chemistry ; Parameters ; Sound ; White dwarf stars</subject><ispartof>Physical review. D, 2020-01, Vol.101 (2), p.1, Article 023001</ispartof><rights>Copyright American Physical Society Jan 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227t-9c33c59c19662cb34f6846b04d5b7dc9edc265cc75972b351d265c205104b3543</cites><orcidid>0000-0003-3574-6737 ; 0000-0003-1621-0873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Smerechynskyi, S.</creatorcontrib><creatorcontrib>Tsizh, M.</creatorcontrib><creatorcontrib>Novosyadlyj, B.</creatorcontrib><title>White dwarfs as a probe of dark energy</title><title>Physical review. D</title><description>We investigate the radial density distribution of the dynamical dark energy inside the white dwarfs (WDs) and its possible impact on their intrinsic structure. The minimally coupled dark energy with the barotropic equation of state, which has three free parameters (density, equation of state, and effective sound speed), is used. We analyze how such dark energy affects the mass-radius relation for the WDs because of its contribution to the joint gravitational potential of the system. For this we use the Chandrasekhar model of the WDs, where model parameters are the parameter of the chemical composition and the relativistic parameter. To evaluate the dark energy distribution inside a WD we solve the conservation equation in the spherical static metric. The obtained distribution is used to find the parameters of dark energy for which the deviation from the Chandrasekhar model mass-radius relation become non-negligible. We conclude also that the absence of observational evidence for the existence of WDs with untypical intrinsic structure (mass-radius relation) gives us lower limits for the value of an effective sound speed of dark energy cs2≳10−4 (in units of speed of light).</description><subject>Chemical composition</subject><subject>Conservation equations</subject><subject>Dark energy</subject><subject>Density distribution</subject><subject>Energy conservation</subject><subject>Energy distribution</subject><subject>Equations of state</subject><subject>Light speed</subject><subject>Mathematical models</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Sound</subject><subject>White dwarf stars</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kN1KAzEQhYMoWGqfwJuA4N2uM_ltLqVqFQqKKF6G3SRrW7Vbk62yb2_KqjAw5wyHmeEj5BShRAR-8bDs02P4uioRsATGAfCAjJjQUAAwc_ivEY7JJKU1ZKnAaMQROX9ZrrpA_XcVm0SrXHQb2zrQtqG-im80bEJ87U_IUVO9pzD57WPyfHP9NLstFvfzu9nlonCM6a4wjnMnjUOjFHM1F42aClWD8LLW3pngHVPSOS2NZjWX6PeWgUQQ2Qo-JmfD3vzE5y6kzq7bXdzkk5ZxyRVOlVY5xYeUi21KMTR2G1cfVewtgt0zsX9M8gDtwIT_AMo2Uuk</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Smerechynskyi, S.</creator><creator>Tsizh, M.</creator><creator>Novosyadlyj, B.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3574-6737</orcidid><orcidid>https://orcid.org/0000-0003-1621-0873</orcidid></search><sort><creationdate>20200102</creationdate><title>White dwarfs as a probe of dark energy</title><author>Smerechynskyi, S. ; Tsizh, M. ; Novosyadlyj, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-9c33c59c19662cb34f6846b04d5b7dc9edc265cc75972b351d265c205104b3543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical composition</topic><topic>Conservation equations</topic><topic>Dark energy</topic><topic>Density distribution</topic><topic>Energy conservation</topic><topic>Energy distribution</topic><topic>Equations of state</topic><topic>Light speed</topic><topic>Mathematical models</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Sound</topic><topic>White dwarf stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smerechynskyi, S.</creatorcontrib><creatorcontrib>Tsizh, M.</creatorcontrib><creatorcontrib>Novosyadlyj, B.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smerechynskyi, S.</au><au>Tsizh, M.</au><au>Novosyadlyj, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>White dwarfs as a probe of dark energy</atitle><jtitle>Physical review. D</jtitle><date>2020-01-02</date><risdate>2020</risdate><volume>101</volume><issue>2</issue><spage>1</spage><pages>1-</pages><artnum>023001</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We investigate the radial density distribution of the dynamical dark energy inside the white dwarfs (WDs) and its possible impact on their intrinsic structure. The minimally coupled dark energy with the barotropic equation of state, which has three free parameters (density, equation of state, and effective sound speed), is used. We analyze how such dark energy affects the mass-radius relation for the WDs because of its contribution to the joint gravitational potential of the system. For this we use the Chandrasekhar model of the WDs, where model parameters are the parameter of the chemical composition and the relativistic parameter. To evaluate the dark energy distribution inside a WD we solve the conservation equation in the spherical static metric. The obtained distribution is used to find the parameters of dark energy for which the deviation from the Chandrasekhar model mass-radius relation become non-negligible. We conclude also that the absence of observational evidence for the existence of WDs with untypical intrinsic structure (mass-radius relation) gives us lower limits for the value of an effective sound speed of dark energy cs2≳10−4 (in units of speed of light).</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.101.023001</doi><orcidid>https://orcid.org/0000-0003-3574-6737</orcidid><orcidid>https://orcid.org/0000-0003-1621-0873</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2020-01, Vol.101 (2), p.1, Article 023001 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2353618676 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Chemical composition Conservation equations Dark energy Density distribution Energy conservation Energy distribution Equations of state Light speed Mathematical models Organic chemistry Parameters Sound White dwarf stars |
title | White dwarfs as a probe of dark energy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=White%20dwarfs%20as%20a%20probe%20of%20dark%20energy&rft.jtitle=Physical%20review.%20D&rft.au=Smerechynskyi,%20S.&rft.date=2020-01-02&rft.volume=101&rft.issue=2&rft.spage=1&rft.pages=1-&rft.artnum=023001&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.101.023001&rft_dat=%3Cproquest_cross%3E2353618676%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-9c33c59c19662cb34f6846b04d5b7dc9edc265cc75972b351d265c205104b3543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2353618676&rft_id=info:pmid/&rfr_iscdi=true |