Loading…

White dwarfs as a probe of dark energy

We investigate the radial density distribution of the dynamical dark energy inside the white dwarfs (WDs) and its possible impact on their intrinsic structure. The minimally coupled dark energy with the barotropic equation of state, which has three free parameters (density, equation of state, and ef...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D 2020-01, Vol.101 (2), p.1, Article 023001
Main Authors: Smerechynskyi, S., Tsizh, M., Novosyadlyj, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c227t-9c33c59c19662cb34f6846b04d5b7dc9edc265cc75972b351d265c205104b3543
container_end_page
container_issue 2
container_start_page 1
container_title Physical review. D
container_volume 101
creator Smerechynskyi, S.
Tsizh, M.
Novosyadlyj, B.
description We investigate the radial density distribution of the dynamical dark energy inside the white dwarfs (WDs) and its possible impact on their intrinsic structure. The minimally coupled dark energy with the barotropic equation of state, which has three free parameters (density, equation of state, and effective sound speed), is used. We analyze how such dark energy affects the mass-radius relation for the WDs because of its contribution to the joint gravitational potential of the system. For this we use the Chandrasekhar model of the WDs, where model parameters are the parameter of the chemical composition and the relativistic parameter. To evaluate the dark energy distribution inside a WD we solve the conservation equation in the spherical static metric. The obtained distribution is used to find the parameters of dark energy for which the deviation from the Chandrasekhar model mass-radius relation become non-negligible. We conclude also that the absence of observational evidence for the existence of WDs with untypical intrinsic structure (mass-radius relation) gives us lower limits for the value of an effective sound speed of dark energy cs2≳10−4 (in units of speed of light).
doi_str_mv 10.1103/PhysRevD.101.023001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2353618676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353618676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-9c33c59c19662cb34f6846b04d5b7dc9edc265cc75972b351d265c205104b3543</originalsourceid><addsrcrecordid>eNo9kN1KAzEQhYMoWGqfwJuA4N2uM_ltLqVqFQqKKF6G3SRrW7Vbk62yb2_KqjAw5wyHmeEj5BShRAR-8bDs02P4uioRsATGAfCAjJjQUAAwc_ivEY7JJKU1ZKnAaMQROX9ZrrpA_XcVm0SrXHQb2zrQtqG-im80bEJ87U_IUVO9pzD57WPyfHP9NLstFvfzu9nlonCM6a4wjnMnjUOjFHM1F42aClWD8LLW3pngHVPSOS2NZjWX6PeWgUQQ2Qo-JmfD3vzE5y6kzq7bXdzkk5ZxyRVOlVY5xYeUi21KMTR2G1cfVewtgt0zsX9M8gDtwIT_AMo2Uuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353618676</pqid></control><display><type>article</type><title>White dwarfs as a probe of dark energy</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Smerechynskyi, S. ; Tsizh, M. ; Novosyadlyj, B.</creator><creatorcontrib>Smerechynskyi, S. ; Tsizh, M. ; Novosyadlyj, B.</creatorcontrib><description>We investigate the radial density distribution of the dynamical dark energy inside the white dwarfs (WDs) and its possible impact on their intrinsic structure. The minimally coupled dark energy with the barotropic equation of state, which has three free parameters (density, equation of state, and effective sound speed), is used. We analyze how such dark energy affects the mass-radius relation for the WDs because of its contribution to the joint gravitational potential of the system. For this we use the Chandrasekhar model of the WDs, where model parameters are the parameter of the chemical composition and the relativistic parameter. To evaluate the dark energy distribution inside a WD we solve the conservation equation in the spherical static metric. The obtained distribution is used to find the parameters of dark energy for which the deviation from the Chandrasekhar model mass-radius relation become non-negligible. We conclude also that the absence of observational evidence for the existence of WDs with untypical intrinsic structure (mass-radius relation) gives us lower limits for the value of an effective sound speed of dark energy cs2≳10−4 (in units of speed of light).</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.101.023001</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Chemical composition ; Conservation equations ; Dark energy ; Density distribution ; Energy conservation ; Energy distribution ; Equations of state ; Light speed ; Mathematical models ; Organic chemistry ; Parameters ; Sound ; White dwarf stars</subject><ispartof>Physical review. D, 2020-01, Vol.101 (2), p.1, Article 023001</ispartof><rights>Copyright American Physical Society Jan 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227t-9c33c59c19662cb34f6846b04d5b7dc9edc265cc75972b351d265c205104b3543</cites><orcidid>0000-0003-3574-6737 ; 0000-0003-1621-0873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Smerechynskyi, S.</creatorcontrib><creatorcontrib>Tsizh, M.</creatorcontrib><creatorcontrib>Novosyadlyj, B.</creatorcontrib><title>White dwarfs as a probe of dark energy</title><title>Physical review. D</title><description>We investigate the radial density distribution of the dynamical dark energy inside the white dwarfs (WDs) and its possible impact on their intrinsic structure. The minimally coupled dark energy with the barotropic equation of state, which has three free parameters (density, equation of state, and effective sound speed), is used. We analyze how such dark energy affects the mass-radius relation for the WDs because of its contribution to the joint gravitational potential of the system. For this we use the Chandrasekhar model of the WDs, where model parameters are the parameter of the chemical composition and the relativistic parameter. To evaluate the dark energy distribution inside a WD we solve the conservation equation in the spherical static metric. The obtained distribution is used to find the parameters of dark energy for which the deviation from the Chandrasekhar model mass-radius relation become non-negligible. We conclude also that the absence of observational evidence for the existence of WDs with untypical intrinsic structure (mass-radius relation) gives us lower limits for the value of an effective sound speed of dark energy cs2≳10−4 (in units of speed of light).</description><subject>Chemical composition</subject><subject>Conservation equations</subject><subject>Dark energy</subject><subject>Density distribution</subject><subject>Energy conservation</subject><subject>Energy distribution</subject><subject>Equations of state</subject><subject>Light speed</subject><subject>Mathematical models</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Sound</subject><subject>White dwarf stars</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kN1KAzEQhYMoWGqfwJuA4N2uM_ltLqVqFQqKKF6G3SRrW7Vbk62yb2_KqjAw5wyHmeEj5BShRAR-8bDs02P4uioRsATGAfCAjJjQUAAwc_ivEY7JJKU1ZKnAaMQROX9ZrrpA_XcVm0SrXHQb2zrQtqG-im80bEJ87U_IUVO9pzD57WPyfHP9NLstFvfzu9nlonCM6a4wjnMnjUOjFHM1F42aClWD8LLW3pngHVPSOS2NZjWX6PeWgUQQ2Qo-JmfD3vzE5y6kzq7bXdzkk5ZxyRVOlVY5xYeUi21KMTR2G1cfVewtgt0zsX9M8gDtwIT_AMo2Uuk</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Smerechynskyi, S.</creator><creator>Tsizh, M.</creator><creator>Novosyadlyj, B.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3574-6737</orcidid><orcidid>https://orcid.org/0000-0003-1621-0873</orcidid></search><sort><creationdate>20200102</creationdate><title>White dwarfs as a probe of dark energy</title><author>Smerechynskyi, S. ; Tsizh, M. ; Novosyadlyj, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-9c33c59c19662cb34f6846b04d5b7dc9edc265cc75972b351d265c205104b3543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical composition</topic><topic>Conservation equations</topic><topic>Dark energy</topic><topic>Density distribution</topic><topic>Energy conservation</topic><topic>Energy distribution</topic><topic>Equations of state</topic><topic>Light speed</topic><topic>Mathematical models</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Sound</topic><topic>White dwarf stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smerechynskyi, S.</creatorcontrib><creatorcontrib>Tsizh, M.</creatorcontrib><creatorcontrib>Novosyadlyj, B.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smerechynskyi, S.</au><au>Tsizh, M.</au><au>Novosyadlyj, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>White dwarfs as a probe of dark energy</atitle><jtitle>Physical review. D</jtitle><date>2020-01-02</date><risdate>2020</risdate><volume>101</volume><issue>2</issue><spage>1</spage><pages>1-</pages><artnum>023001</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We investigate the radial density distribution of the dynamical dark energy inside the white dwarfs (WDs) and its possible impact on their intrinsic structure. The minimally coupled dark energy with the barotropic equation of state, which has three free parameters (density, equation of state, and effective sound speed), is used. We analyze how such dark energy affects the mass-radius relation for the WDs because of its contribution to the joint gravitational potential of the system. For this we use the Chandrasekhar model of the WDs, where model parameters are the parameter of the chemical composition and the relativistic parameter. To evaluate the dark energy distribution inside a WD we solve the conservation equation in the spherical static metric. The obtained distribution is used to find the parameters of dark energy for which the deviation from the Chandrasekhar model mass-radius relation become non-negligible. We conclude also that the absence of observational evidence for the existence of WDs with untypical intrinsic structure (mass-radius relation) gives us lower limits for the value of an effective sound speed of dark energy cs2≳10−4 (in units of speed of light).</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.101.023001</doi><orcidid>https://orcid.org/0000-0003-3574-6737</orcidid><orcidid>https://orcid.org/0000-0003-1621-0873</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2020-01, Vol.101 (2), p.1, Article 023001
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2353618676
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Chemical composition
Conservation equations
Dark energy
Density distribution
Energy conservation
Energy distribution
Equations of state
Light speed
Mathematical models
Organic chemistry
Parameters
Sound
White dwarf stars
title White dwarfs as a probe of dark energy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=White%20dwarfs%20as%20a%20probe%20of%20dark%20energy&rft.jtitle=Physical%20review.%20D&rft.au=Smerechynskyi,%20S.&rft.date=2020-01-02&rft.volume=101&rft.issue=2&rft.spage=1&rft.pages=1-&rft.artnum=023001&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.101.023001&rft_dat=%3Cproquest_cross%3E2353618676%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-9c33c59c19662cb34f6846b04d5b7dc9edc265cc75972b351d265c205104b3543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2353618676&rft_id=info:pmid/&rfr_iscdi=true