Loading…

Warm brane inflation with an exponential potential: A consistent realization away from the swampland

It has very recently been realized that coupling branes to higher dimensional quantum gravity theories and considering the consistency of what lives on the branes, one is able to understand whether such theories can belong either to the swampland or to the landscape. In this regard, in the present w...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D 2020-01, Vol.101 (2), p.1, Article 023535
Main Authors: Kamali, Vahid, Motaharfar, Meysam, Ramos, Rudnei O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It has very recently been realized that coupling branes to higher dimensional quantum gravity theories and considering the consistency of what lives on the branes, one is able to understand whether such theories can belong either to the swampland or to the landscape. In this regard, in the present work, we study a warm inflation model embedded in the Randall-Sundrum brane-world scenario. It is explicitly shown that this model belongs to the landscape by supporting a strong dissipative regime with an inflaton steep exponential potential. The presence of extra dimension effects from the braneworld allow achieving this strong dissipative regime, which is shown to be both theoretically and observationally consistent. In fact, such strong dissipation effects, which decrease towards the end of inflation, together with the extra dimension effect, allow the present realization to simultaneously satisfy all previous restrictions imposed on such a model and to evade the recently proposed swampland conjectures. The present implementation of this model, in terms of an exponential potential for the scalar field, makes it also a possible candidate for describing the late-time Universe in the context of a dissipative quintessential inflation model, and we discuss this possibility in the Conclusions.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.101.023535