Loading…

Time optimal control based on classification of quantum gates

We study the minimum time to implement an arbitrary two-qubit gate in two heteronuclear spins systems. We give a systematic characterization of two-qubit gates based on the invariants of local equivalence. The quantum gates are classified into four classes, and for each class the analytical formula...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-02
Main Authors: Bao-Zhi Sun, Shao-Ming, Fei, Naihuan Jing, Li-Jost, Xianqing
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bao-Zhi Sun
Shao-Ming, Fei
Naihuan Jing
Li-Jost, Xianqing
description We study the minimum time to implement an arbitrary two-qubit gate in two heteronuclear spins systems. We give a systematic characterization of two-qubit gates based on the invariants of local equivalence. The quantum gates are classified into four classes, and for each class the analytical formula of the minimum time to implement the quantum gates is explicitly presented. For given quantum gates, by calculating the corresponding invariants one easily obtains the classes to which the quantum gates belong. In particular, we analyze the effect of global phases on the minimum time to implement the gate. Our results present complete solutions to the optimal time problem in implementing an arbitrary two-qubit gate in two heteronuclear spins systems. Detailed examples are given to typical two-qubit gates with or without global phases.
doi_str_mv 10.48550/arxiv.2002.03161
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2353850694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353850694</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-af66c99afe032196b3f8ddacaa4e784e1502088307f3c5bbaabb851318491ddd3</originalsourceid><addsrcrecordid>eNotjctqwzAUBUWh0JDmA7oTdG1X0pVkedFFCX0EAt14H65eRcG2Essu_fwa2tVhGJhDyANntTRKsSecftJ3LRgTNQOu-Q3ZCABeGSnEHdmVcmar041QCjbkuUtDoPkypwF76vI4T7mnFkvwNI_U9VhKisnhnFbMkV4XHOdloF84h3JPbiP2Jez-d0u6t9du_1EdP98P-5djhUrICqPWrm0xBgaCt9pCNN6jQ5ShMTJwxQQzBlgTwSlrEa01igM3suXee9iSx7_sZcrXJZT5dM7LNK6PJwEKjGK6lfALnHRKMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353850694</pqid></control><display><type>article</type><title>Time optimal control based on classification of quantum gates</title><source>Publicly Available Content Database</source><creator>Bao-Zhi Sun ; Shao-Ming, Fei ; Naihuan Jing ; Li-Jost, Xianqing</creator><creatorcontrib>Bao-Zhi Sun ; Shao-Ming, Fei ; Naihuan Jing ; Li-Jost, Xianqing</creatorcontrib><description>We study the minimum time to implement an arbitrary two-qubit gate in two heteronuclear spins systems. We give a systematic characterization of two-qubit gates based on the invariants of local equivalence. The quantum gates are classified into four classes, and for each class the analytical formula of the minimum time to implement the quantum gates is explicitly presented. For given quantum gates, by calculating the corresponding invariants one easily obtains the classes to which the quantum gates belong. In particular, we analyze the effect of global phases on the minimum time to implement the gate. Our results present complete solutions to the optimal time problem in implementing an arbitrary two-qubit gate in two heteronuclear spins systems. Detailed examples are given to typical two-qubit gates with or without global phases.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2002.03161</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Gates ; Invariants ; Qubits (quantum computing) ; Time optimal control</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2353850694?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Bao-Zhi Sun</creatorcontrib><creatorcontrib>Shao-Ming, Fei</creatorcontrib><creatorcontrib>Naihuan Jing</creatorcontrib><creatorcontrib>Li-Jost, Xianqing</creatorcontrib><title>Time optimal control based on classification of quantum gates</title><title>arXiv.org</title><description>We study the minimum time to implement an arbitrary two-qubit gate in two heteronuclear spins systems. We give a systematic characterization of two-qubit gates based on the invariants of local equivalence. The quantum gates are classified into four classes, and for each class the analytical formula of the minimum time to implement the quantum gates is explicitly presented. For given quantum gates, by calculating the corresponding invariants one easily obtains the classes to which the quantum gates belong. In particular, we analyze the effect of global phases on the minimum time to implement the gate. Our results present complete solutions to the optimal time problem in implementing an arbitrary two-qubit gate in two heteronuclear spins systems. Detailed examples are given to typical two-qubit gates with or without global phases.</description><subject>Gates</subject><subject>Invariants</subject><subject>Qubits (quantum computing)</subject><subject>Time optimal control</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctqwzAUBUWh0JDmA7oTdG1X0pVkedFFCX0EAt14H65eRcG2Essu_fwa2tVhGJhDyANntTRKsSecftJ3LRgTNQOu-Q3ZCABeGSnEHdmVcmar041QCjbkuUtDoPkypwF76vI4T7mnFkvwNI_U9VhKisnhnFbMkV4XHOdloF84h3JPbiP2Jez-d0u6t9du_1EdP98P-5djhUrICqPWrm0xBgaCt9pCNN6jQ5ShMTJwxQQzBlgTwSlrEa01igM3suXee9iSx7_sZcrXJZT5dM7LNK6PJwEKjGK6lfALnHRKMg</recordid><startdate>20200211</startdate><enddate>20200211</enddate><creator>Bao-Zhi Sun</creator><creator>Shao-Ming, Fei</creator><creator>Naihuan Jing</creator><creator>Li-Jost, Xianqing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200211</creationdate><title>Time optimal control based on classification of quantum gates</title><author>Bao-Zhi Sun ; Shao-Ming, Fei ; Naihuan Jing ; Li-Jost, Xianqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-af66c99afe032196b3f8ddacaa4e784e1502088307f3c5bbaabb851318491ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Gates</topic><topic>Invariants</topic><topic>Qubits (quantum computing)</topic><topic>Time optimal control</topic><toplevel>online_resources</toplevel><creatorcontrib>Bao-Zhi Sun</creatorcontrib><creatorcontrib>Shao-Ming, Fei</creatorcontrib><creatorcontrib>Naihuan Jing</creatorcontrib><creatorcontrib>Li-Jost, Xianqing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao-Zhi Sun</au><au>Shao-Ming, Fei</au><au>Naihuan Jing</au><au>Li-Jost, Xianqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time optimal control based on classification of quantum gates</atitle><jtitle>arXiv.org</jtitle><date>2020-02-11</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We study the minimum time to implement an arbitrary two-qubit gate in two heteronuclear spins systems. We give a systematic characterization of two-qubit gates based on the invariants of local equivalence. The quantum gates are classified into four classes, and for each class the analytical formula of the minimum time to implement the quantum gates is explicitly presented. For given quantum gates, by calculating the corresponding invariants one easily obtains the classes to which the quantum gates belong. In particular, we analyze the effect of global phases on the minimum time to implement the gate. Our results present complete solutions to the optimal time problem in implementing an arbitrary two-qubit gate in two heteronuclear spins systems. Detailed examples are given to typical two-qubit gates with or without global phases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2002.03161</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2353850694
source Publicly Available Content Database
subjects Gates
Invariants
Qubits (quantum computing)
Time optimal control
title Time optimal control based on classification of quantum gates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20optimal%20control%20based%20on%20classification%20of%20quantum%20gates&rft.jtitle=arXiv.org&rft.au=Bao-Zhi%20Sun&rft.date=2020-02-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2002.03161&rft_dat=%3Cproquest%3E2353850694%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-af66c99afe032196b3f8ddacaa4e784e1502088307f3c5bbaabb851318491ddd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2353850694&rft_id=info:pmid/&rfr_iscdi=true