Loading…

Bi and Zn co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and a record high room temperature ZT

Lead free SnTe with a tunable electronic structure has become the front runner in eco-friendly thermoelectrics. Herein, we show through first-principles density functional theory calculations that Bi and Zn doping introduces a resonance level in SnTe. The dominance of the heavy hole valence band at...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-01, Vol.8 (6), p.2036-2042
Main Authors: Shenoy, U Sandhya, Bhat, D Krishna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-97b54b76e073fa63a088bf81fb1b61ba644ff6cd708d2ea987143377ad88fc503
cites cdi_FETCH-LOGICAL-c398t-97b54b76e073fa63a088bf81fb1b61ba644ff6cd708d2ea987143377ad88fc503
container_end_page 2042
container_issue 6
container_start_page 2036
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 8
creator Shenoy, U Sandhya
Bhat, D Krishna
description Lead free SnTe with a tunable electronic structure has become the front runner in eco-friendly thermoelectrics. Herein, we show through first-principles density functional theory calculations that Bi and Zn doping introduces a resonance level in SnTe. The dominance of the heavy hole valence band at room temperature in Bi–Zn co-doped SnTe leads to a record high room temperature ZT of ∼0.3 (at 300 K) for SnTe based materials. The increase in the Seebeck coefficient value due to the interaction between the resonance states and formation of the nanoprecipitates leading to an appreciably low lattice thermal conductivity of 0.68 W m −1 K −1 results in a peak ZT of ∼1.6 at 840 K. A record high ZT average of ∼0.86 with 300 K and 840 K as cold and hot ends, respectively, makes Bi–Zn co-doped SnTe a potential material for thermoelectric applications. This strategy of using two resonant dopants, to not only improve the room temperature ZT but also high temperature values, can very well be extended to other systems.
doi_str_mv 10.1039/C9TC06490G
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354044705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354044705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-97b54b76e073fa63a088bf81fb1b61ba644ff6cd708d2ea987143377ad88fc503</originalsourceid><addsrcrecordid>eNpFkclOwzAQQCMEEhVw4QtG4oYUcGrHdrhBxSZV4kC59BI59rhJldjBTpH6S3wladnmMtvTm8MkyXlGrjJCi-tZsZgRzgryeJBMpiQnqcgpO_yrp_w4OYtxTcaQGZe8mCSfdw0oZ2DpQPvU-B4NvLoFwlBj6Dy2qIfQ6HgDjRsw9K3agrcQMHqnnEZo8QPbuHfUqD62UPsWodr1xnfNL6RM41YweEBX70YGegzWh26_39FqlGofRk2zqiF438GA3UipYRMQlovT5MiqNuLZTz5J3h7uF7OndP7y-Dy7naeaFnJIC1HlrBIciaBWcaqIlJWVma2yimeV4oxZy7URRJopqkKKjFEqhDJSWp0TepJcfHv74N83GIdy7TfBjSfLKc0ZYUyQfKQuvykdfIwBbdmHplNhW2ak3L2j_H8H_QLDzX7x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354044705</pqid></control><display><type>article</type><title>Bi and Zn co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and a record high room temperature ZT</title><source>Royal Society of Chemistry</source><creator>Shenoy, U Sandhya ; Bhat, D Krishna</creator><creatorcontrib>Shenoy, U Sandhya ; Bhat, D Krishna</creatorcontrib><description>Lead free SnTe with a tunable electronic structure has become the front runner in eco-friendly thermoelectrics. Herein, we show through first-principles density functional theory calculations that Bi and Zn doping introduces a resonance level in SnTe. The dominance of the heavy hole valence band at room temperature in Bi–Zn co-doped SnTe leads to a record high room temperature ZT of ∼0.3 (at 300 K) for SnTe based materials. The increase in the Seebeck coefficient value due to the interaction between the resonance states and formation of the nanoprecipitates leading to an appreciably low lattice thermal conductivity of 0.68 W m −1 K −1 results in a peak ZT of ∼1.6 at 840 K. A record high ZT average of ∼0.86 with 300 K and 840 K as cold and hot ends, respectively, makes Bi–Zn co-doped SnTe a potential material for thermoelectric applications. This strategy of using two resonant dopants, to not only improve the room temperature ZT but also high temperature values, can very well be extended to other systems.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/C9TC06490G</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bismuth ; Carrier density ; Chemical potential ; Density functional theory ; Density of states ; Electrical resistivity ; Electronic structure ; First principles ; Heat conductivity ; Heat transfer ; High temperature ; Lead free ; Mathematical analysis ; Organic chemistry ; Performance enhancement ; Power factor ; Resonance ; Room temperature ; Seebeck effect ; Thermal conductivity ; Thermoelectric materials ; Thermoelectricity ; Valence band</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-01, Vol.8 (6), p.2036-2042</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-97b54b76e073fa63a088bf81fb1b61ba644ff6cd708d2ea987143377ad88fc503</citedby><cites>FETCH-LOGICAL-c398t-97b54b76e073fa63a088bf81fb1b61ba644ff6cd708d2ea987143377ad88fc503</cites><orcidid>0000-0003-0383-6017 ; 0000-0002-6786-882X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Shenoy, U Sandhya</creatorcontrib><creatorcontrib>Bhat, D Krishna</creatorcontrib><title>Bi and Zn co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and a record high room temperature ZT</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Lead free SnTe with a tunable electronic structure has become the front runner in eco-friendly thermoelectrics. Herein, we show through first-principles density functional theory calculations that Bi and Zn doping introduces a resonance level in SnTe. The dominance of the heavy hole valence band at room temperature in Bi–Zn co-doped SnTe leads to a record high room temperature ZT of ∼0.3 (at 300 K) for SnTe based materials. The increase in the Seebeck coefficient value due to the interaction between the resonance states and formation of the nanoprecipitates leading to an appreciably low lattice thermal conductivity of 0.68 W m −1 K −1 results in a peak ZT of ∼1.6 at 840 K. A record high ZT average of ∼0.86 with 300 K and 840 K as cold and hot ends, respectively, makes Bi–Zn co-doped SnTe a potential material for thermoelectric applications. This strategy of using two resonant dopants, to not only improve the room temperature ZT but also high temperature values, can very well be extended to other systems.</description><subject>Bismuth</subject><subject>Carrier density</subject><subject>Chemical potential</subject><subject>Density functional theory</subject><subject>Density of states</subject><subject>Electrical resistivity</subject><subject>Electronic structure</subject><subject>First principles</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Lead free</subject><subject>Mathematical analysis</subject><subject>Organic chemistry</subject><subject>Performance enhancement</subject><subject>Power factor</subject><subject>Resonance</subject><subject>Room temperature</subject><subject>Seebeck effect</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Thermoelectricity</subject><subject>Valence band</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkclOwzAQQCMEEhVw4QtG4oYUcGrHdrhBxSZV4kC59BI59rhJldjBTpH6S3wladnmMtvTm8MkyXlGrjJCi-tZsZgRzgryeJBMpiQnqcgpO_yrp_w4OYtxTcaQGZe8mCSfdw0oZ2DpQPvU-B4NvLoFwlBj6Dy2qIfQ6HgDjRsw9K3agrcQMHqnnEZo8QPbuHfUqD62UPsWodr1xnfNL6RM41YweEBX70YGegzWh26_39FqlGofRk2zqiF438GA3UipYRMQlovT5MiqNuLZTz5J3h7uF7OndP7y-Dy7naeaFnJIC1HlrBIciaBWcaqIlJWVma2yimeV4oxZy7URRJopqkKKjFEqhDJSWp0TepJcfHv74N83GIdy7TfBjSfLKc0ZYUyQfKQuvykdfIwBbdmHplNhW2ak3L2j_H8H_QLDzX7x</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Shenoy, U Sandhya</creator><creator>Bhat, D Krishna</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0383-6017</orcidid><orcidid>https://orcid.org/0000-0002-6786-882X</orcidid></search><sort><creationdate>20200101</creationdate><title>Bi and Zn co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and a record high room temperature ZT</title><author>Shenoy, U Sandhya ; Bhat, D Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-97b54b76e073fa63a088bf81fb1b61ba644ff6cd708d2ea987143377ad88fc503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bismuth</topic><topic>Carrier density</topic><topic>Chemical potential</topic><topic>Density functional theory</topic><topic>Density of states</topic><topic>Electrical resistivity</topic><topic>Electronic structure</topic><topic>First principles</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Lead free</topic><topic>Mathematical analysis</topic><topic>Organic chemistry</topic><topic>Performance enhancement</topic><topic>Power factor</topic><topic>Resonance</topic><topic>Room temperature</topic><topic>Seebeck effect</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Thermoelectricity</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shenoy, U Sandhya</creatorcontrib><creatorcontrib>Bhat, D Krishna</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shenoy, U Sandhya</au><au>Bhat, D Krishna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi and Zn co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and a record high room temperature ZT</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>6</issue><spage>2036</spage><epage>2042</epage><pages>2036-2042</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Lead free SnTe with a tunable electronic structure has become the front runner in eco-friendly thermoelectrics. Herein, we show through first-principles density functional theory calculations that Bi and Zn doping introduces a resonance level in SnTe. The dominance of the heavy hole valence band at room temperature in Bi–Zn co-doped SnTe leads to a record high room temperature ZT of ∼0.3 (at 300 K) for SnTe based materials. The increase in the Seebeck coefficient value due to the interaction between the resonance states and formation of the nanoprecipitates leading to an appreciably low lattice thermal conductivity of 0.68 W m −1 K −1 results in a peak ZT of ∼1.6 at 840 K. A record high ZT average of ∼0.86 with 300 K and 840 K as cold and hot ends, respectively, makes Bi–Zn co-doped SnTe a potential material for thermoelectric applications. This strategy of using two resonant dopants, to not only improve the room temperature ZT but also high temperature values, can very well be extended to other systems.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9TC06490G</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0383-6017</orcidid><orcidid>https://orcid.org/0000-0002-6786-882X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-01, Vol.8 (6), p.2036-2042
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2354044705
source Royal Society of Chemistry
subjects Bismuth
Carrier density
Chemical potential
Density functional theory
Density of states
Electrical resistivity
Electronic structure
First principles
Heat conductivity
Heat transfer
High temperature
Lead free
Mathematical analysis
Organic chemistry
Performance enhancement
Power factor
Resonance
Room temperature
Seebeck effect
Thermal conductivity
Thermoelectric materials
Thermoelectricity
Valence band
title Bi and Zn co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and a record high room temperature ZT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi%20and%20Zn%20co-doped%20SnTe%20thermoelectrics:%20interplay%20of%20resonance%20levels%20and%20heavy%20hole%20band%20dominance%20leading%20to%20enhanced%20performance%20and%20a%20record%20high%20room%20temperature%20ZT&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Shenoy,%20U%20Sandhya&rft.date=2020-01-01&rft.volume=8&rft.issue=6&rft.spage=2036&rft.epage=2042&rft.pages=2036-2042&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/C9TC06490G&rft_dat=%3Cproquest_cross%3E2354044705%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-97b54b76e073fa63a088bf81fb1b61ba644ff6cd708d2ea987143377ad88fc503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2354044705&rft_id=info:pmid/&rfr_iscdi=true