Loading…

Spatiotemporal Variability of Modeled Watershed Scale Surface‐Depression Storage and Runoff for the Conterminous United States

This study explores the viability of using simulated monthly runoff as a proxy for landscape‐scale surface‐depression storage processes simulated by the United States Geological Survey’s National Hydrologic Model (NHM) infrastructure across the conterminous United States (CONUS). Two different tempo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Water Resources Association 2020-02, Vol.56 (1), p.16-29
Main Authors: Driscoll, Jessica M., Hay, Lauren E., Vanderhoof, Melanie K., Viger, Roland J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3576-19e99d8d13e323779241cb2cd5ac8147dd3cb51621cabfa93cfc7746620fcd413
cites cdi_FETCH-LOGICAL-c3576-19e99d8d13e323779241cb2cd5ac8147dd3cb51621cabfa93cfc7746620fcd413
container_end_page 29
container_issue 1
container_start_page 16
container_title Journal of the American Water Resources Association
container_volume 56
creator Driscoll, Jessica M.
Hay, Lauren E.
Vanderhoof, Melanie K.
Viger, Roland J.
description This study explores the viability of using simulated monthly runoff as a proxy for landscape‐scale surface‐depression storage processes simulated by the United States Geological Survey’s National Hydrologic Model (NHM) infrastructure across the conterminous United States (CONUS). Two different temporal resolution model codes (daily and monthly) were run in the NHM with the same spatial discretization. Simulated values of daily surface‐depression storage (treated as a decimal fraction of maximum volume) as computed by the daily Precipitation‐Runoff Modeling System (NHM‐PRMS) and normalized runoff (0 to 1) as computed by the Monthly Water Balance Model (NHM‐MWBM) were aggregated to monthly and annual values for each hydrologic response unit (HRU) in the CONUS geospatial fabric (HRU; n = 109,951) and analyzed using Spearman’s rank correlation test. Correlations between simulated runoff and surface‐depression storage aggregated to monthly and annual values were compared to identify where which time scale had relatively higher correlation values across the CONUS. Results show Spearman’s rank values >0.75 (highly correlated) for the monthly time scale in 28,279 HRUs (53.35%) compared to the annual time scale in 41,655 HRUs (78.58%). The geographic distribution of HRUs with highly correlated monthly values show areas where surface‐depression storage features are known to be common (e.g., Prairie Pothole Region, Florida). Research Impact Statement: Correlation between simulated runoff and surface depression storage using continental‐extent models to improve understanding and representation of surface‐depression storage processes.
doi_str_mv 10.1111/1752-1688.12826
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354091235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354091235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-19e99d8d13e323779241cb2cd5ac8147dd3cb51621cabfa93cfc7746620fcd413</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEEqWwZmuJdWhs57msyltFSA2l7CzHD-oqjYPtCHXXT-Ab-RIcgtgymzsa3XtGukFwDqNL6GcCswSFMM3zS4hylB4Eo7_Lod-jAodxFr8eByfWbqIIJjDHo2BfttQp7cS21YbW4IUaRStVK7cDWoJHzUUtOFhRJ4xd-61ktBag7IykTHztP69Ea4S1SjegdB7xJgBtOFh0jZYSSG2AWwsw040HbFWjOwuWjXI9yXmoPQ2OJK2tOPvVcbC8uX6e3YXzp9v72XQeMpxkaQgLURQ85xALjHCWFSiGrEKMJ5TlMM44x6xKYIogo5WkBWaSZVmcpiiSjMcQj4OLgdsa_d4J68hGd6bxLwnCSRwV0It3TQYXM9paIyRpjdpSsyMwIn3NpC-V9KWSn5p9Ih0SH6oWu__s5GG6WgzBb1S1gks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354091235</pqid></control><display><type>article</type><title>Spatiotemporal Variability of Modeled Watershed Scale Surface‐Depression Storage and Runoff for the Conterminous United States</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Driscoll, Jessica M. ; Hay, Lauren E. ; Vanderhoof, Melanie K. ; Viger, Roland J.</creator><creatorcontrib>Driscoll, Jessica M. ; Hay, Lauren E. ; Vanderhoof, Melanie K. ; Viger, Roland J.</creatorcontrib><description>This study explores the viability of using simulated monthly runoff as a proxy for landscape‐scale surface‐depression storage processes simulated by the United States Geological Survey’s National Hydrologic Model (NHM) infrastructure across the conterminous United States (CONUS). Two different temporal resolution model codes (daily and monthly) were run in the NHM with the same spatial discretization. Simulated values of daily surface‐depression storage (treated as a decimal fraction of maximum volume) as computed by the daily Precipitation‐Runoff Modeling System (NHM‐PRMS) and normalized runoff (0 to 1) as computed by the Monthly Water Balance Model (NHM‐MWBM) were aggregated to monthly and annual values for each hydrologic response unit (HRU) in the CONUS geospatial fabric (HRU; n = 109,951) and analyzed using Spearman’s rank correlation test. Correlations between simulated runoff and surface‐depression storage aggregated to monthly and annual values were compared to identify where which time scale had relatively higher correlation values across the CONUS. Results show Spearman’s rank values &gt;0.75 (highly correlated) for the monthly time scale in 28,279 HRUs (53.35%) compared to the annual time scale in 41,655 HRUs (78.58%). The geographic distribution of HRUs with highly correlated monthly values show areas where surface‐depression storage features are known to be common (e.g., Prairie Pothole Region, Florida). Research Impact Statement: Correlation between simulated runoff and surface depression storage using continental‐extent models to improve understanding and representation of surface‐depression storage processes.</description><identifier>ISSN: 1093-474X</identifier><identifier>EISSN: 1752-1688</identifier><identifier>DOI: 10.1111/1752-1688.12826</identifier><language>eng</language><publisher>Middleburg: Blackwell Publishing Ltd</publisher><subject>Annual ; Annual runoff ; Computation ; Computer simulation ; Correlation ; Correlation analysis ; Daily ; Depression storage ; Geographical distribution ; Geologic depressions ; Geological surveys ; Hydrologic models ; Hydrology ; modeling ; Monthly ; MWBM ; Potholes ; PRMS ; Runoff ; Surface runoff ; surface‐depression storage ; Surveying ; Temporal resolution ; Time ; Viability ; Water balance ; Watersheds</subject><ispartof>Journal of the American Water Resources Association, 2020-02, Vol.56 (1), p.16-29</ispartof><rights>Published 2020. This article is a U.S. Government work and is in the public domain in the USA.</rights><rights>2020 American Water Resources Association</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-19e99d8d13e323779241cb2cd5ac8147dd3cb51621cabfa93cfc7746620fcd413</citedby><cites>FETCH-LOGICAL-c3576-19e99d8d13e323779241cb2cd5ac8147dd3cb51621cabfa93cfc7746620fcd413</cites><orcidid>0000-0002-0101-5533 ; 0000-0003-2520-714X ; 0000-0003-3097-9603 ; 0000-0003-3763-4595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Driscoll, Jessica M.</creatorcontrib><creatorcontrib>Hay, Lauren E.</creatorcontrib><creatorcontrib>Vanderhoof, Melanie K.</creatorcontrib><creatorcontrib>Viger, Roland J.</creatorcontrib><title>Spatiotemporal Variability of Modeled Watershed Scale Surface‐Depression Storage and Runoff for the Conterminous United States</title><title>Journal of the American Water Resources Association</title><description>This study explores the viability of using simulated monthly runoff as a proxy for landscape‐scale surface‐depression storage processes simulated by the United States Geological Survey’s National Hydrologic Model (NHM) infrastructure across the conterminous United States (CONUS). Two different temporal resolution model codes (daily and monthly) were run in the NHM with the same spatial discretization. Simulated values of daily surface‐depression storage (treated as a decimal fraction of maximum volume) as computed by the daily Precipitation‐Runoff Modeling System (NHM‐PRMS) and normalized runoff (0 to 1) as computed by the Monthly Water Balance Model (NHM‐MWBM) were aggregated to monthly and annual values for each hydrologic response unit (HRU) in the CONUS geospatial fabric (HRU; n = 109,951) and analyzed using Spearman’s rank correlation test. Correlations between simulated runoff and surface‐depression storage aggregated to monthly and annual values were compared to identify where which time scale had relatively higher correlation values across the CONUS. Results show Spearman’s rank values &gt;0.75 (highly correlated) for the monthly time scale in 28,279 HRUs (53.35%) compared to the annual time scale in 41,655 HRUs (78.58%). The geographic distribution of HRUs with highly correlated monthly values show areas where surface‐depression storage features are known to be common (e.g., Prairie Pothole Region, Florida). Research Impact Statement: Correlation between simulated runoff and surface depression storage using continental‐extent models to improve understanding and representation of surface‐depression storage processes.</description><subject>Annual</subject><subject>Annual runoff</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Daily</subject><subject>Depression storage</subject><subject>Geographical distribution</subject><subject>Geologic depressions</subject><subject>Geological surveys</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>modeling</subject><subject>Monthly</subject><subject>MWBM</subject><subject>Potholes</subject><subject>PRMS</subject><subject>Runoff</subject><subject>Surface runoff</subject><subject>surface‐depression storage</subject><subject>Surveying</subject><subject>Temporal resolution</subject><subject>Time</subject><subject>Viability</subject><subject>Water balance</subject><subject>Watersheds</subject><issn>1093-474X</issn><issn>1752-1688</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRSMEEqWwZmuJdWhs57msyltFSA2l7CzHD-oqjYPtCHXXT-Ab-RIcgtgymzsa3XtGukFwDqNL6GcCswSFMM3zS4hylB4Eo7_Lod-jAodxFr8eByfWbqIIJjDHo2BfttQp7cS21YbW4IUaRStVK7cDWoJHzUUtOFhRJ4xd-61ktBag7IykTHztP69Ea4S1SjegdB7xJgBtOFh0jZYSSG2AWwsw040HbFWjOwuWjXI9yXmoPQ2OJK2tOPvVcbC8uX6e3YXzp9v72XQeMpxkaQgLURQ85xALjHCWFSiGrEKMJ5TlMM44x6xKYIogo5WkBWaSZVmcpiiSjMcQj4OLgdsa_d4J68hGd6bxLwnCSRwV0It3TQYXM9paIyRpjdpSsyMwIn3NpC-V9KWSn5p9Ih0SH6oWu__s5GG6WgzBb1S1gks</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Driscoll, Jessica M.</creator><creator>Hay, Lauren E.</creator><creator>Vanderhoof, Melanie K.</creator><creator>Viger, Roland J.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0101-5533</orcidid><orcidid>https://orcid.org/0000-0003-2520-714X</orcidid><orcidid>https://orcid.org/0000-0003-3097-9603</orcidid><orcidid>https://orcid.org/0000-0003-3763-4595</orcidid></search><sort><creationdate>202002</creationdate><title>Spatiotemporal Variability of Modeled Watershed Scale Surface‐Depression Storage and Runoff for the Conterminous United States</title><author>Driscoll, Jessica M. ; Hay, Lauren E. ; Vanderhoof, Melanie K. ; Viger, Roland J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-19e99d8d13e323779241cb2cd5ac8147dd3cb51621cabfa93cfc7746620fcd413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annual</topic><topic>Annual runoff</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Daily</topic><topic>Depression storage</topic><topic>Geographical distribution</topic><topic>Geologic depressions</topic><topic>Geological surveys</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>modeling</topic><topic>Monthly</topic><topic>MWBM</topic><topic>Potholes</topic><topic>PRMS</topic><topic>Runoff</topic><topic>Surface runoff</topic><topic>surface‐depression storage</topic><topic>Surveying</topic><topic>Temporal resolution</topic><topic>Time</topic><topic>Viability</topic><topic>Water balance</topic><topic>Watersheds</topic><toplevel>online_resources</toplevel><creatorcontrib>Driscoll, Jessica M.</creatorcontrib><creatorcontrib>Hay, Lauren E.</creatorcontrib><creatorcontrib>Vanderhoof, Melanie K.</creatorcontrib><creatorcontrib>Viger, Roland J.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of the American Water Resources Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Driscoll, Jessica M.</au><au>Hay, Lauren E.</au><au>Vanderhoof, Melanie K.</au><au>Viger, Roland J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal Variability of Modeled Watershed Scale Surface‐Depression Storage and Runoff for the Conterminous United States</atitle><jtitle>Journal of the American Water Resources Association</jtitle><date>2020-02</date><risdate>2020</risdate><volume>56</volume><issue>1</issue><spage>16</spage><epage>29</epage><pages>16-29</pages><issn>1093-474X</issn><eissn>1752-1688</eissn><abstract>This study explores the viability of using simulated monthly runoff as a proxy for landscape‐scale surface‐depression storage processes simulated by the United States Geological Survey’s National Hydrologic Model (NHM) infrastructure across the conterminous United States (CONUS). Two different temporal resolution model codes (daily and monthly) were run in the NHM with the same spatial discretization. Simulated values of daily surface‐depression storage (treated as a decimal fraction of maximum volume) as computed by the daily Precipitation‐Runoff Modeling System (NHM‐PRMS) and normalized runoff (0 to 1) as computed by the Monthly Water Balance Model (NHM‐MWBM) were aggregated to monthly and annual values for each hydrologic response unit (HRU) in the CONUS geospatial fabric (HRU; n = 109,951) and analyzed using Spearman’s rank correlation test. Correlations between simulated runoff and surface‐depression storage aggregated to monthly and annual values were compared to identify where which time scale had relatively higher correlation values across the CONUS. Results show Spearman’s rank values &gt;0.75 (highly correlated) for the monthly time scale in 28,279 HRUs (53.35%) compared to the annual time scale in 41,655 HRUs (78.58%). The geographic distribution of HRUs with highly correlated monthly values show areas where surface‐depression storage features are known to be common (e.g., Prairie Pothole Region, Florida). Research Impact Statement: Correlation between simulated runoff and surface depression storage using continental‐extent models to improve understanding and representation of surface‐depression storage processes.</abstract><cop>Middleburg</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/1752-1688.12826</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0101-5533</orcidid><orcidid>https://orcid.org/0000-0003-2520-714X</orcidid><orcidid>https://orcid.org/0000-0003-3097-9603</orcidid><orcidid>https://orcid.org/0000-0003-3763-4595</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1093-474X
ispartof Journal of the American Water Resources Association, 2020-02, Vol.56 (1), p.16-29
issn 1093-474X
1752-1688
language eng
recordid cdi_proquest_journals_2354091235
source Wiley-Blackwell Read & Publish Collection
subjects Annual
Annual runoff
Computation
Computer simulation
Correlation
Correlation analysis
Daily
Depression storage
Geographical distribution
Geologic depressions
Geological surveys
Hydrologic models
Hydrology
modeling
Monthly
MWBM
Potholes
PRMS
Runoff
Surface runoff
surface‐depression storage
Surveying
Temporal resolution
Time
Viability
Water balance
Watersheds
title Spatiotemporal Variability of Modeled Watershed Scale Surface‐Depression Storage and Runoff for the Conterminous United States
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20Variability%20of%20Modeled%20Watershed%20Scale%20Surface%E2%80%90Depression%20Storage%20and%20Runoff%20for%20the%20Conterminous%20United%20States&rft.jtitle=Journal%20of%20the%20American%20Water%20Resources%20Association&rft.au=Driscoll,%20Jessica%20M.&rft.date=2020-02&rft.volume=56&rft.issue=1&rft.spage=16&rft.epage=29&rft.pages=16-29&rft.issn=1093-474X&rft.eissn=1752-1688&rft_id=info:doi/10.1111/1752-1688.12826&rft_dat=%3Cproquest_cross%3E2354091235%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3576-19e99d8d13e323779241cb2cd5ac8147dd3cb51621cabfa93cfc7746620fcd413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2354091235&rft_id=info:pmid/&rfr_iscdi=true