Loading…
Effects of Pr and pool curvature on thermocapillary flow instabilities in annular pool
•Detailed linear stability analysis of thermocapillary flow in annular pools.•First report on the effects of pool curvature on the stability of thermocapillary flow.•First report on the effect of the Prandtl number over a wide range from 0 to 100.•Instabilities in low Prandtl number fluids are hydro...
Saved in:
Published in: | International journal of heat and mass transfer 2020-03, Vol.149, p.119103, Article 119103 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c370t-1ebf46e13e53664d10d6b99e5288a28fe62034a731ca4725ea576588a143ff003 |
---|---|
cites | cdi_FETCH-LOGICAL-c370t-1ebf46e13e53664d10d6b99e5288a28fe62034a731ca4725ea576588a143ff003 |
container_end_page | |
container_issue | |
container_start_page | 119103 |
container_title | International journal of heat and mass transfer |
container_volume | 149 |
creator | Imaishi, N. Ermakov, M.K. Shi, W.Y. |
description | •Detailed linear stability analysis of thermocapillary flow in annular pools.•First report on the effects of pool curvature on the stability of thermocapillary flow.•First report on the effect of the Prandtl number over a wide range from 0 to 100.•Instabilities in low Prandtl number fluids are hydrodynamic in nature.•Hydrothermal waves are dominant only for Prandtl number larger than 0.02.
We linearly analyzed the effect of the Prandtl number (Pr) on the stability of thermocapillary flow in shallow annular pools with an aspect ratio Γ = (Ro - Ri)/d = 20 and two radius ratios ΓR = Ri/Ro= 0.50 and 0.98039, where d, Ro, and Ri are the liquid depth and the radii of the heated outer wall and the cooled inner wall, respectively. The results for Pr ∈ [0, 102] show that the steady axisymmetric thermocapillary flows in these annular pools become unstable against oscillatory instability modes, OSC1, OSC2 and hydrothermal wave (HTW). Two co-dimension-two bifurcations occur at Pr*1 and Pr*2. The critical mode for Pr ≤ Pr*1 is OSC2 with almost constant critical Reynolds number Rec, large wave number and high frequency. OSC1 with smaller wave number and lower frequency is the critical mode for Pr*1 ≤ Pr ≤ Pr*2 and Rec slightly decreases with increasing Pr. HTW is the critical mode for Pr ≥ Pr*2 and Rec decreases with increasing Pr. The values of (Pr*1, Pr*2) are (0.00953, 0.03054) for ΓR = 0.50, and (0.01919, 0.01946) for ΓR = 0.98039. Energy-budget analyses reveal that the instabilities in low-Pr range are caused by instabilities in the steady toroidal vortex (or vortices) near the cold wall. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2019.119103 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354306248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931019317521</els_id><sourcerecordid>2354306248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-1ebf46e13e53664d10d6b99e5288a28fe62034a731ca4725ea576588a143ff003</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EEqXwDpa4cEnwxomT3EBV-VMlOABXy03WqqM0LrZTxNvjEm5cOK1Gszur-Qi5ApYCA3HdpabboApb5X1wavAaXZoxqFOAGhg_IjOoyjrJoKqPyYwxKJOaAzslZ953B8lyMSPvS62xCZ5aTV8cVUNLd9b2tBndXoXRIbUDDRt0W9uonel75b6o7u0nNYMPam16Ewz6qOLtMEb75_6cnGjVe7z4nXPydrd8XTwkq-f7x8XtKml4yUICuNa5QOBYcCHyFlgr1nWNRVZVKqs0iozxXJUcGpWXWYGqKEURPci51ozxObmccnfOfozog-zs6Ib4Uma8yDkTWV7FrZtpq3HWe4da7pzZxiYSmDzQlJ38S1MeaMqJZox4miIwttmb6PrG4NBga1zkJ1tr_h_2DZ9winY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354306248</pqid></control><display><type>article</type><title>Effects of Pr and pool curvature on thermocapillary flow instabilities in annular pool</title><source>ScienceDirect Freedom Collection</source><creator>Imaishi, N. ; Ermakov, M.K. ; Shi, W.Y.</creator><creatorcontrib>Imaishi, N. ; Ermakov, M.K. ; Shi, W.Y.</creatorcontrib><description>•Detailed linear stability analysis of thermocapillary flow in annular pools.•First report on the effects of pool curvature on the stability of thermocapillary flow.•First report on the effect of the Prandtl number over a wide range from 0 to 100.•Instabilities in low Prandtl number fluids are hydrodynamic in nature.•Hydrothermal waves are dominant only for Prandtl number larger than 0.02.
We linearly analyzed the effect of the Prandtl number (Pr) on the stability of thermocapillary flow in shallow annular pools with an aspect ratio Γ = (Ro - Ri)/d = 20 and two radius ratios ΓR = Ri/Ro= 0.50 and 0.98039, where d, Ro, and Ri are the liquid depth and the radii of the heated outer wall and the cooled inner wall, respectively. The results for Pr ∈ [0, 102] show that the steady axisymmetric thermocapillary flows in these annular pools become unstable against oscillatory instability modes, OSC1, OSC2 and hydrothermal wave (HTW). Two co-dimension-two bifurcations occur at Pr*1 and Pr*2. The critical mode for Pr ≤ Pr*1 is OSC2 with almost constant critical Reynolds number Rec, large wave number and high frequency. OSC1 with smaller wave number and lower frequency is the critical mode for Pr*1 ≤ Pr ≤ Pr*2 and Rec slightly decreases with increasing Pr. HTW is the critical mode for Pr ≥ Pr*2 and Rec decreases with increasing Pr. The values of (Pr*1, Pr*2) are (0.00953, 0.03054) for ΓR = 0.50, and (0.01919, 0.01946) for ΓR = 0.98039. Energy-budget analyses reveal that the instabilities in low-Pr range are caused by instabilities in the steady toroidal vortex (or vortices) near the cold wall.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2019.119103</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Annular pool ; Aspect ratio ; Bifurcations ; Centrifugal instability ; Flow stability ; Fluid dynamics ; Fluid flow ; Hydrothermal waves ; Linear stability analysis ; Marangoni effect ; Pools ; Prandtl number ; Reynolds number ; Stability analysis ; Thermocapillary flow ; Wavelengths</subject><ispartof>International journal of heat and mass transfer, 2020-03, Vol.149, p.119103, Article 119103</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-1ebf46e13e53664d10d6b99e5288a28fe62034a731ca4725ea576588a143ff003</citedby><cites>FETCH-LOGICAL-c370t-1ebf46e13e53664d10d6b99e5288a28fe62034a731ca4725ea576588a143ff003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Imaishi, N.</creatorcontrib><creatorcontrib>Ermakov, M.K.</creatorcontrib><creatorcontrib>Shi, W.Y.</creatorcontrib><title>Effects of Pr and pool curvature on thermocapillary flow instabilities in annular pool</title><title>International journal of heat and mass transfer</title><description>•Detailed linear stability analysis of thermocapillary flow in annular pools.•First report on the effects of pool curvature on the stability of thermocapillary flow.•First report on the effect of the Prandtl number over a wide range from 0 to 100.•Instabilities in low Prandtl number fluids are hydrodynamic in nature.•Hydrothermal waves are dominant only for Prandtl number larger than 0.02.
We linearly analyzed the effect of the Prandtl number (Pr) on the stability of thermocapillary flow in shallow annular pools with an aspect ratio Γ = (Ro - Ri)/d = 20 and two radius ratios ΓR = Ri/Ro= 0.50 and 0.98039, where d, Ro, and Ri are the liquid depth and the radii of the heated outer wall and the cooled inner wall, respectively. The results for Pr ∈ [0, 102] show that the steady axisymmetric thermocapillary flows in these annular pools become unstable against oscillatory instability modes, OSC1, OSC2 and hydrothermal wave (HTW). Two co-dimension-two bifurcations occur at Pr*1 and Pr*2. The critical mode for Pr ≤ Pr*1 is OSC2 with almost constant critical Reynolds number Rec, large wave number and high frequency. OSC1 with smaller wave number and lower frequency is the critical mode for Pr*1 ≤ Pr ≤ Pr*2 and Rec slightly decreases with increasing Pr. HTW is the critical mode for Pr ≥ Pr*2 and Rec decreases with increasing Pr. The values of (Pr*1, Pr*2) are (0.00953, 0.03054) for ΓR = 0.50, and (0.01919, 0.01946) for ΓR = 0.98039. Energy-budget analyses reveal that the instabilities in low-Pr range are caused by instabilities in the steady toroidal vortex (or vortices) near the cold wall.</description><subject>Annular pool</subject><subject>Aspect ratio</subject><subject>Bifurcations</subject><subject>Centrifugal instability</subject><subject>Flow stability</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hydrothermal waves</subject><subject>Linear stability analysis</subject><subject>Marangoni effect</subject><subject>Pools</subject><subject>Prandtl number</subject><subject>Reynolds number</subject><subject>Stability analysis</subject><subject>Thermocapillary flow</subject><subject>Wavelengths</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhC0EEqXwDpa4cEnwxomT3EBV-VMlOABXy03WqqM0LrZTxNvjEm5cOK1Gszur-Qi5ApYCA3HdpabboApb5X1wavAaXZoxqFOAGhg_IjOoyjrJoKqPyYwxKJOaAzslZ953B8lyMSPvS62xCZ5aTV8cVUNLd9b2tBndXoXRIbUDDRt0W9uonel75b6o7u0nNYMPam16Ewz6qOLtMEb75_6cnGjVe7z4nXPydrd8XTwkq-f7x8XtKml4yUICuNa5QOBYcCHyFlgr1nWNRVZVKqs0iozxXJUcGpWXWYGqKEURPci51ozxObmccnfOfozog-zs6Ib4Uma8yDkTWV7FrZtpq3HWe4da7pzZxiYSmDzQlJ38S1MeaMqJZox4miIwttmb6PrG4NBga1zkJ1tr_h_2DZ9winY</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Imaishi, N.</creator><creator>Ermakov, M.K.</creator><creator>Shi, W.Y.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202003</creationdate><title>Effects of Pr and pool curvature on thermocapillary flow instabilities in annular pool</title><author>Imaishi, N. ; Ermakov, M.K. ; Shi, W.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-1ebf46e13e53664d10d6b99e5288a28fe62034a731ca4725ea576588a143ff003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annular pool</topic><topic>Aspect ratio</topic><topic>Bifurcations</topic><topic>Centrifugal instability</topic><topic>Flow stability</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hydrothermal waves</topic><topic>Linear stability analysis</topic><topic>Marangoni effect</topic><topic>Pools</topic><topic>Prandtl number</topic><topic>Reynolds number</topic><topic>Stability analysis</topic><topic>Thermocapillary flow</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imaishi, N.</creatorcontrib><creatorcontrib>Ermakov, M.K.</creatorcontrib><creatorcontrib>Shi, W.Y.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imaishi, N.</au><au>Ermakov, M.K.</au><au>Shi, W.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Pr and pool curvature on thermocapillary flow instabilities in annular pool</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2020-03</date><risdate>2020</risdate><volume>149</volume><spage>119103</spage><pages>119103-</pages><artnum>119103</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Detailed linear stability analysis of thermocapillary flow in annular pools.•First report on the effects of pool curvature on the stability of thermocapillary flow.•First report on the effect of the Prandtl number over a wide range from 0 to 100.•Instabilities in low Prandtl number fluids are hydrodynamic in nature.•Hydrothermal waves are dominant only for Prandtl number larger than 0.02.
We linearly analyzed the effect of the Prandtl number (Pr) on the stability of thermocapillary flow in shallow annular pools with an aspect ratio Γ = (Ro - Ri)/d = 20 and two radius ratios ΓR = Ri/Ro= 0.50 and 0.98039, where d, Ro, and Ri are the liquid depth and the radii of the heated outer wall and the cooled inner wall, respectively. The results for Pr ∈ [0, 102] show that the steady axisymmetric thermocapillary flows in these annular pools become unstable against oscillatory instability modes, OSC1, OSC2 and hydrothermal wave (HTW). Two co-dimension-two bifurcations occur at Pr*1 and Pr*2. The critical mode for Pr ≤ Pr*1 is OSC2 with almost constant critical Reynolds number Rec, large wave number and high frequency. OSC1 with smaller wave number and lower frequency is the critical mode for Pr*1 ≤ Pr ≤ Pr*2 and Rec slightly decreases with increasing Pr. HTW is the critical mode for Pr ≥ Pr*2 and Rec decreases with increasing Pr. The values of (Pr*1, Pr*2) are (0.00953, 0.03054) for ΓR = 0.50, and (0.01919, 0.01946) for ΓR = 0.98039. Energy-budget analyses reveal that the instabilities in low-Pr range are caused by instabilities in the steady toroidal vortex (or vortices) near the cold wall.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2019.119103</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2020-03, Vol.149, p.119103, Article 119103 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_journals_2354306248 |
source | ScienceDirect Freedom Collection |
subjects | Annular pool Aspect ratio Bifurcations Centrifugal instability Flow stability Fluid dynamics Fluid flow Hydrothermal waves Linear stability analysis Marangoni effect Pools Prandtl number Reynolds number Stability analysis Thermocapillary flow Wavelengths |
title | Effects of Pr and pool curvature on thermocapillary flow instabilities in annular pool |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Pr%20and%20pool%20curvature%20on%20thermocapillary%20flow%20instabilities%20in%20annular%20pool&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Imaishi,%20N.&rft.date=2020-03&rft.volume=149&rft.spage=119103&rft.pages=119103-&rft.artnum=119103&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2019.119103&rft_dat=%3Cproquest_cross%3E2354306248%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-1ebf46e13e53664d10d6b99e5288a28fe62034a731ca4725ea576588a143ff003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2354306248&rft_id=info:pmid/&rfr_iscdi=true |