Loading…

A molecular dynamics study of transient evaporation and condensation

We use molecular dynamics (MD) simulations to study the transient evaporation and condensation of a pure fluid Ar in a nanochannel. In the MD model, the evaporation and condensation of fluid Ar is initiated by a sudden increase of the temperature or periodically varying the temperature in the solid...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2020-03, Vol.149, p.119152, Article 119152
Main Authors: Liang, Zhi, Chandra, Anirban, Bird, Eric, Keblinski, Pawel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We use molecular dynamics (MD) simulations to study the transient evaporation and condensation of a pure fluid Ar in a nanochannel. In the MD model, the evaporation and condensation of fluid Ar is initiated by a sudden increase of the temperature or periodically varying the temperature in the solid substrate on one side of the nanochannel. In both cases, we find the transient evaporation and condensation rates obtained directly from MD simulations are in good agreement with the predictions from the Schrage relationships. Furthermore, our analyses show that the kinetics of the transient heat and mass transfer between the evaporating and the condensing surfaces in the nanochannel are mainly controlled by heat and mass diffusion in the vapor rather than by convection. The simulation results indicate that the Schrage relationships are capable of accurately describing the transient evaporation/condensation processes and their rates even under a high-frequency oscillatory driving force condition.
ISSN:0017-9310
1879-2189
DOI:10.1016/j.ijheatmasstransfer.2019.119152