Loading…

A molecular dynamics study of transient evaporation and condensation

We use molecular dynamics (MD) simulations to study the transient evaporation and condensation of a pure fluid Ar in a nanochannel. In the MD model, the evaporation and condensation of fluid Ar is initiated by a sudden increase of the temperature or periodically varying the temperature in the solid...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2020-03, Vol.149, p.119152, Article 119152
Main Authors: Liang, Zhi, Chandra, Anirban, Bird, Eric, Keblinski, Pawel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-ba117ed5be8722dde1de1ad71f3988827912dabb8bb4dacd5ebe922df5f93cf03
cites cdi_FETCH-LOGICAL-c428t-ba117ed5be8722dde1de1ad71f3988827912dabb8bb4dacd5ebe922df5f93cf03
container_end_page
container_issue
container_start_page 119152
container_title International journal of heat and mass transfer
container_volume 149
creator Liang, Zhi
Chandra, Anirban
Bird, Eric
Keblinski, Pawel
description We use molecular dynamics (MD) simulations to study the transient evaporation and condensation of a pure fluid Ar in a nanochannel. In the MD model, the evaporation and condensation of fluid Ar is initiated by a sudden increase of the temperature or periodically varying the temperature in the solid substrate on one side of the nanochannel. In both cases, we find the transient evaporation and condensation rates obtained directly from MD simulations are in good agreement with the predictions from the Schrage relationships. Furthermore, our analyses show that the kinetics of the transient heat and mass transfer between the evaporating and the condensing surfaces in the nanochannel are mainly controlled by heat and mass diffusion in the vapor rather than by convection. The simulation results indicate that the Schrage relationships are capable of accurately describing the transient evaporation/condensation processes and their rates even under a high-frequency oscillatory driving force condition.
doi_str_mv 10.1016/j.ijheatmasstransfer.2019.119152
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354306324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931019318617</els_id><sourcerecordid>2354306324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-ba117ed5be8722dde1de1ad71f3988827912dabb8bb4dacd5ebe922df5f93cf03</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-h4AXL62ZtN0mN5f1mwUveg5pMsGW3WZNWmH_vdmtNy_CwDDJyzPMQ8gNsBwYLG67vO0-UQ9bHeMQdB8dhpwzkDmAhIqfkBmIWmYchDwlM8agzmQB7JxcxNgdRlYuZuR-Sbd-g2bc6EDtvtfb1kQah9HuqXf0SG6xHyh-650Pemh9T3VvqfG9xT4eHy7JmdObiFe_fU4-Hh_eV8_Z-u3pZbVcZ6bkYsgaDVCjrRoUNefWIqTStgZXSCEEryVwq5tGNE1ptbEVNihT0FVOFsaxYk6uJ-4u-K8R46A6P4Y-rVS8qMqCLQpeptTdlDLBxxjQqV1otzrsFTB1cKc69dedOrhTk7uEeJ0QmK75btNvNMmCQdsGNIOyvv0_7Af7voZR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354306324</pqid></control><display><type>article</type><title>A molecular dynamics study of transient evaporation and condensation</title><source>ScienceDirect Freedom Collection</source><creator>Liang, Zhi ; Chandra, Anirban ; Bird, Eric ; Keblinski, Pawel</creator><creatorcontrib>Liang, Zhi ; Chandra, Anirban ; Bird, Eric ; Keblinski, Pawel</creatorcontrib><description>We use molecular dynamics (MD) simulations to study the transient evaporation and condensation of a pure fluid Ar in a nanochannel. In the MD model, the evaporation and condensation of fluid Ar is initiated by a sudden increase of the temperature or periodically varying the temperature in the solid substrate on one side of the nanochannel. In both cases, we find the transient evaporation and condensation rates obtained directly from MD simulations are in good agreement with the predictions from the Schrage relationships. Furthermore, our analyses show that the kinetics of the transient heat and mass transfer between the evaporating and the condensing surfaces in the nanochannel are mainly controlled by heat and mass diffusion in the vapor rather than by convection. The simulation results indicate that the Schrage relationships are capable of accurately describing the transient evaporation/condensation processes and their rates even under a high-frequency oscillatory driving force condition.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2019.119152</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computer simulation ; Condensation ; Evaporation rate ; Heat transfer ; Mass transfer ; Molecular dynamics ; Nanochannels ; Schrage relationships ; Substrates ; Transient evaporation and condensation</subject><ispartof>International journal of heat and mass transfer, 2020-03, Vol.149, p.119152, Article 119152</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-ba117ed5be8722dde1de1ad71f3988827912dabb8bb4dacd5ebe922df5f93cf03</citedby><cites>FETCH-LOGICAL-c428t-ba117ed5be8722dde1de1ad71f3988827912dabb8bb4dacd5ebe922df5f93cf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Liang, Zhi</creatorcontrib><creatorcontrib>Chandra, Anirban</creatorcontrib><creatorcontrib>Bird, Eric</creatorcontrib><creatorcontrib>Keblinski, Pawel</creatorcontrib><title>A molecular dynamics study of transient evaporation and condensation</title><title>International journal of heat and mass transfer</title><description>We use molecular dynamics (MD) simulations to study the transient evaporation and condensation of a pure fluid Ar in a nanochannel. In the MD model, the evaporation and condensation of fluid Ar is initiated by a sudden increase of the temperature or periodically varying the temperature in the solid substrate on one side of the nanochannel. In both cases, we find the transient evaporation and condensation rates obtained directly from MD simulations are in good agreement with the predictions from the Schrage relationships. Furthermore, our analyses show that the kinetics of the transient heat and mass transfer between the evaporating and the condensing surfaces in the nanochannel are mainly controlled by heat and mass diffusion in the vapor rather than by convection. The simulation results indicate that the Schrage relationships are capable of accurately describing the transient evaporation/condensation processes and their rates even under a high-frequency oscillatory driving force condition.</description><subject>Computer simulation</subject><subject>Condensation</subject><subject>Evaporation rate</subject><subject>Heat transfer</subject><subject>Mass transfer</subject><subject>Molecular dynamics</subject><subject>Nanochannels</subject><subject>Schrage relationships</subject><subject>Substrates</subject><subject>Transient evaporation and condensation</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-h4AXL62ZtN0mN5f1mwUveg5pMsGW3WZNWmH_vdmtNy_CwDDJyzPMQ8gNsBwYLG67vO0-UQ9bHeMQdB8dhpwzkDmAhIqfkBmIWmYchDwlM8agzmQB7JxcxNgdRlYuZuR-Sbd-g2bc6EDtvtfb1kQah9HuqXf0SG6xHyh-650Pemh9T3VvqfG9xT4eHy7JmdObiFe_fU4-Hh_eV8_Z-u3pZbVcZ6bkYsgaDVCjrRoUNefWIqTStgZXSCEEryVwq5tGNE1ptbEVNihT0FVOFsaxYk6uJ-4u-K8R46A6P4Y-rVS8qMqCLQpeptTdlDLBxxjQqV1otzrsFTB1cKc69dedOrhTk7uEeJ0QmK75btNvNMmCQdsGNIOyvv0_7Af7voZR</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Liang, Zhi</creator><creator>Chandra, Anirban</creator><creator>Bird, Eric</creator><creator>Keblinski, Pawel</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202003</creationdate><title>A molecular dynamics study of transient evaporation and condensation</title><author>Liang, Zhi ; Chandra, Anirban ; Bird, Eric ; Keblinski, Pawel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-ba117ed5be8722dde1de1ad71f3988827912dabb8bb4dacd5ebe922df5f93cf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Condensation</topic><topic>Evaporation rate</topic><topic>Heat transfer</topic><topic>Mass transfer</topic><topic>Molecular dynamics</topic><topic>Nanochannels</topic><topic>Schrage relationships</topic><topic>Substrates</topic><topic>Transient evaporation and condensation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Zhi</creatorcontrib><creatorcontrib>Chandra, Anirban</creatorcontrib><creatorcontrib>Bird, Eric</creatorcontrib><creatorcontrib>Keblinski, Pawel</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Zhi</au><au>Chandra, Anirban</au><au>Bird, Eric</au><au>Keblinski, Pawel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A molecular dynamics study of transient evaporation and condensation</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2020-03</date><risdate>2020</risdate><volume>149</volume><spage>119152</spage><pages>119152-</pages><artnum>119152</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>We use molecular dynamics (MD) simulations to study the transient evaporation and condensation of a pure fluid Ar in a nanochannel. In the MD model, the evaporation and condensation of fluid Ar is initiated by a sudden increase of the temperature or periodically varying the temperature in the solid substrate on one side of the nanochannel. In both cases, we find the transient evaporation and condensation rates obtained directly from MD simulations are in good agreement with the predictions from the Schrage relationships. Furthermore, our analyses show that the kinetics of the transient heat and mass transfer between the evaporating and the condensing surfaces in the nanochannel are mainly controlled by heat and mass diffusion in the vapor rather than by convection. The simulation results indicate that the Schrage relationships are capable of accurately describing the transient evaporation/condensation processes and their rates even under a high-frequency oscillatory driving force condition.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2019.119152</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2020-03, Vol.149, p.119152, Article 119152
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2354306324
source ScienceDirect Freedom Collection
subjects Computer simulation
Condensation
Evaporation rate
Heat transfer
Mass transfer
Molecular dynamics
Nanochannels
Schrage relationships
Substrates
Transient evaporation and condensation
title A molecular dynamics study of transient evaporation and condensation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20molecular%20dynamics%20study%20of%20transient%20evaporation%20and%20condensation&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Liang,%20Zhi&rft.date=2020-03&rft.volume=149&rft.spage=119152&rft.pages=119152-&rft.artnum=119152&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2019.119152&rft_dat=%3Cproquest_cross%3E2354306324%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-ba117ed5be8722dde1de1ad71f3988827912dabb8bb4dacd5ebe922df5f93cf03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2354306324&rft_id=info:pmid/&rfr_iscdi=true