Loading…

Prussian blue analogue-derived Mn–Fe oxide nanocubes with controllable crystal structure and crystallinity as highly efficient OER electrocatalysts

A series of ternary manganese iron oxides with different crystal structures, oxidation states and crystallinities were successfully fabricated by modulating the calcination conditions of Mn–Fe Prussian blue analogue (PBA) precursor (Mn3 [Fe(CN)6]2·nH2O). The obtained Mn–Fe oxides retained the nanocu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2020-04, Vol.820, p.153438, Article 153438
Main Authors: Ma, Quanyin, Dong, Rui, Liu, Heng, Zhu, Anquan, Qiao, Lulu, Ma, Yongjin, Wang, Juan, Xie, Jianping, Pan, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-81f1a66f358f9196472b68cf5e64ba614ec1ff7d58ab08b9e6d02abf6047d84f3
cites cdi_FETCH-LOGICAL-c337t-81f1a66f358f9196472b68cf5e64ba614ec1ff7d58ab08b9e6d02abf6047d84f3
container_end_page
container_issue
container_start_page 153438
container_title Journal of alloys and compounds
container_volume 820
creator Ma, Quanyin
Dong, Rui
Liu, Heng
Zhu, Anquan
Qiao, Lulu
Ma, Yongjin
Wang, Juan
Xie, Jianping
Pan, Jun
description A series of ternary manganese iron oxides with different crystal structures, oxidation states and crystallinities were successfully fabricated by modulating the calcination conditions of Mn–Fe Prussian blue analogue (PBA) precursor (Mn3 [Fe(CN)6]2·nH2O). The obtained Mn–Fe oxides retained the nanocubic morphology of the PBA precursor, and a mesoporous structure was acquired as a result of gas molecule release during the pyrolysis process. Electrochemical oxygen evolution reaction (OER) activity of the as-prepared catalysts was tested, and among the bimetallic oxides, the catalyst that had a crystal structure similar to cubic bixbyite Mn1.2Fe0.8O3 (space group: Ia-3) with low crystallinity exhibited the most advanced OER activity. An overpotential of only 245 mV was required to achieve a current density of 10 mA cm−2, and the Tafel slope value was only 38 mV dec−1. The excellent OER activity is likely due to the hollow porous morphology of the samples, the synergistic effect of Mn and Fe, the defect-rich low crystallinity of the catalyst, and the cubic Mn1.2Fe0.8O3 structure (space group: Ia-3), which has an intrinsic activity superior to that of spinel Mn1.8Fe1.2O4. Mn-Fe PBA were used as precursor to obtain Mn-Fe ternary oxides with controllable crystal structure and crystallinity for oxygen evolution. [Display omitted] •Mn–Fe ternary oxide nanocubes were obtained via thermal decomposition of Mn–Fe Prussian blue analogue precursor.•Catalysts with different crystal structure and crystallinity could be obtained through modulating of calcination conditions.•Mn–Fe Prussian blue analogue precursor could be transformed to bimetallic oxides with cubic bixbyite structure.•Bixbyite Mn1.2Fe0.8O3 samples showed superior oxygen evolution reaction activity than spinel Mn1.8Fe1.2O4 structure samples.•Bimetallic Mn1.2Fe0.8O3 catalyst with low crystallinity shows the best electrocatalytic activity towards water oxidation.
doi_str_mv 10.1016/j.jallcom.2019.153438
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354310326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819346845</els_id><sourcerecordid>2354310326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-81f1a66f358f9196472b68cf5e64ba614ec1ff7d58ab08b9e6d02abf6047d84f3</originalsourceid><addsrcrecordid>eNqFkc1q3DAURkVpoNNJH6Eg6NoTybJleVVKyE8hISEkayFLVzMyGiuV5CSz6zuEvGCfpBomXXd14XLuge9-CH2lZEUJ5SfjalTe67Bd1YT2K9qyhokPaEFFx6qG8_4jWpC-bivBhPiEPqc0ElJIRhfo7TbOKTk14cHPgNWkfFjPUBmI7gkMvp7-_H49BxxenAE8qSnoeYCEn13eYB2mHIP3avCAddylrDxOOc46z3EvM_-23k0u77BKeOPWG7_DYK3TDqaMb87uMHjQxaRVQQufjtGRVT7Bl_e5RA_nZ_enl9XVzcXP0x9XlWasy5WglirOLWuF7WnPm64euNC2Bd4MitMGNLW2M61QAxFDD9yQWg2Wk6YzorFsib4dvI8x_JohZTmGOZYfJFmztmGUsJoXqj1QOoaUIlj5GN1WxZ2kRO4bkKN8b0DuG5CHBsrd98MdlAhPDqJM-8gajIslrzTB_cfwFyt7lvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354310326</pqid></control><display><type>article</type><title>Prussian blue analogue-derived Mn–Fe oxide nanocubes with controllable crystal structure and crystallinity as highly efficient OER electrocatalysts</title><source>Elsevier</source><creator>Ma, Quanyin ; Dong, Rui ; Liu, Heng ; Zhu, Anquan ; Qiao, Lulu ; Ma, Yongjin ; Wang, Juan ; Xie, Jianping ; Pan, Jun</creator><creatorcontrib>Ma, Quanyin ; Dong, Rui ; Liu, Heng ; Zhu, Anquan ; Qiao, Lulu ; Ma, Yongjin ; Wang, Juan ; Xie, Jianping ; Pan, Jun</creatorcontrib><description>A series of ternary manganese iron oxides with different crystal structures, oxidation states and crystallinities were successfully fabricated by modulating the calcination conditions of Mn–Fe Prussian blue analogue (PBA) precursor (Mn3 [Fe(CN)6]2·nH2O). The obtained Mn–Fe oxides retained the nanocubic morphology of the PBA precursor, and a mesoporous structure was acquired as a result of gas molecule release during the pyrolysis process. Electrochemical oxygen evolution reaction (OER) activity of the as-prepared catalysts was tested, and among the bimetallic oxides, the catalyst that had a crystal structure similar to cubic bixbyite Mn1.2Fe0.8O3 (space group: Ia-3) with low crystallinity exhibited the most advanced OER activity. An overpotential of only 245 mV was required to achieve a current density of 10 mA cm−2, and the Tafel slope value was only 38 mV dec−1. The excellent OER activity is likely due to the hollow porous morphology of the samples, the synergistic effect of Mn and Fe, the defect-rich low crystallinity of the catalyst, and the cubic Mn1.2Fe0.8O3 structure (space group: Ia-3), which has an intrinsic activity superior to that of spinel Mn1.8Fe1.2O4. Mn-Fe PBA were used as precursor to obtain Mn-Fe ternary oxides with controllable crystal structure and crystallinity for oxygen evolution. [Display omitted] •Mn–Fe ternary oxide nanocubes were obtained via thermal decomposition of Mn–Fe Prussian blue analogue precursor.•Catalysts with different crystal structure and crystallinity could be obtained through modulating of calcination conditions.•Mn–Fe Prussian blue analogue precursor could be transformed to bimetallic oxides with cubic bixbyite structure.•Bixbyite Mn1.2Fe0.8O3 samples showed superior oxygen evolution reaction activity than spinel Mn1.8Fe1.2O4 structure samples.•Bimetallic Mn1.2Fe0.8O3 catalyst with low crystallinity shows the best electrocatalytic activity towards water oxidation.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.153438</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Bimetals ; Catalysts ; Crystal structure ; Crystallinity ; Electrocatalyst ; Electrocatalysts ; Iron oxides ; Manganese ; Mn–Fe oxides ; Morphology ; Oxidation ; Oxides ; Oxygen evolution reaction ; Oxygen evolution reactions ; Pigments ; Precursors ; Prussian blue analogous ; Pyrolysis ; Synergistic effect ; Water splitting</subject><ispartof>Journal of alloys and compounds, 2020-04, Vol.820, p.153438, Article 153438</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-81f1a66f358f9196472b68cf5e64ba614ec1ff7d58ab08b9e6d02abf6047d84f3</citedby><cites>FETCH-LOGICAL-c337t-81f1a66f358f9196472b68cf5e64ba614ec1ff7d58ab08b9e6d02abf6047d84f3</cites><orcidid>0000-0001-5212-6770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ma, Quanyin</creatorcontrib><creatorcontrib>Dong, Rui</creatorcontrib><creatorcontrib>Liu, Heng</creatorcontrib><creatorcontrib>Zhu, Anquan</creatorcontrib><creatorcontrib>Qiao, Lulu</creatorcontrib><creatorcontrib>Ma, Yongjin</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Xie, Jianping</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><title>Prussian blue analogue-derived Mn–Fe oxide nanocubes with controllable crystal structure and crystallinity as highly efficient OER electrocatalysts</title><title>Journal of alloys and compounds</title><description>A series of ternary manganese iron oxides with different crystal structures, oxidation states and crystallinities were successfully fabricated by modulating the calcination conditions of Mn–Fe Prussian blue analogue (PBA) precursor (Mn3 [Fe(CN)6]2·nH2O). The obtained Mn–Fe oxides retained the nanocubic morphology of the PBA precursor, and a mesoporous structure was acquired as a result of gas molecule release during the pyrolysis process. Electrochemical oxygen evolution reaction (OER) activity of the as-prepared catalysts was tested, and among the bimetallic oxides, the catalyst that had a crystal structure similar to cubic bixbyite Mn1.2Fe0.8O3 (space group: Ia-3) with low crystallinity exhibited the most advanced OER activity. An overpotential of only 245 mV was required to achieve a current density of 10 mA cm−2, and the Tafel slope value was only 38 mV dec−1. The excellent OER activity is likely due to the hollow porous morphology of the samples, the synergistic effect of Mn and Fe, the defect-rich low crystallinity of the catalyst, and the cubic Mn1.2Fe0.8O3 structure (space group: Ia-3), which has an intrinsic activity superior to that of spinel Mn1.8Fe1.2O4. Mn-Fe PBA were used as precursor to obtain Mn-Fe ternary oxides with controllable crystal structure and crystallinity for oxygen evolution. [Display omitted] •Mn–Fe ternary oxide nanocubes were obtained via thermal decomposition of Mn–Fe Prussian blue analogue precursor.•Catalysts with different crystal structure and crystallinity could be obtained through modulating of calcination conditions.•Mn–Fe Prussian blue analogue precursor could be transformed to bimetallic oxides with cubic bixbyite structure.•Bixbyite Mn1.2Fe0.8O3 samples showed superior oxygen evolution reaction activity than spinel Mn1.8Fe1.2O4 structure samples.•Bimetallic Mn1.2Fe0.8O3 catalyst with low crystallinity shows the best electrocatalytic activity towards water oxidation.</description><subject>Bimetals</subject><subject>Catalysts</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Electrocatalyst</subject><subject>Electrocatalysts</subject><subject>Iron oxides</subject><subject>Manganese</subject><subject>Mn–Fe oxides</subject><subject>Morphology</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Pigments</subject><subject>Precursors</subject><subject>Prussian blue analogous</subject><subject>Pyrolysis</subject><subject>Synergistic effect</subject><subject>Water splitting</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1q3DAURkVpoNNJH6Eg6NoTybJleVVKyE8hISEkayFLVzMyGiuV5CSz6zuEvGCfpBomXXd14XLuge9-CH2lZEUJ5SfjalTe67Bd1YT2K9qyhokPaEFFx6qG8_4jWpC-bivBhPiEPqc0ElJIRhfo7TbOKTk14cHPgNWkfFjPUBmI7gkMvp7-_H49BxxenAE8qSnoeYCEn13eYB2mHIP3avCAddylrDxOOc46z3EvM_-23k0u77BKeOPWG7_DYK3TDqaMb87uMHjQxaRVQQufjtGRVT7Bl_e5RA_nZ_enl9XVzcXP0x9XlWasy5WglirOLWuF7WnPm64euNC2Bd4MitMGNLW2M61QAxFDD9yQWg2Wk6YzorFsib4dvI8x_JohZTmGOZYfJFmztmGUsJoXqj1QOoaUIlj5GN1WxZ2kRO4bkKN8b0DuG5CHBsrd98MdlAhPDqJM-8gajIslrzTB_cfwFyt7lvo</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Ma, Quanyin</creator><creator>Dong, Rui</creator><creator>Liu, Heng</creator><creator>Zhu, Anquan</creator><creator>Qiao, Lulu</creator><creator>Ma, Yongjin</creator><creator>Wang, Juan</creator><creator>Xie, Jianping</creator><creator>Pan, Jun</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5212-6770</orcidid></search><sort><creationdate>20200415</creationdate><title>Prussian blue analogue-derived Mn–Fe oxide nanocubes with controllable crystal structure and crystallinity as highly efficient OER electrocatalysts</title><author>Ma, Quanyin ; Dong, Rui ; Liu, Heng ; Zhu, Anquan ; Qiao, Lulu ; Ma, Yongjin ; Wang, Juan ; Xie, Jianping ; Pan, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-81f1a66f358f9196472b68cf5e64ba614ec1ff7d58ab08b9e6d02abf6047d84f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bimetals</topic><topic>Catalysts</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Electrocatalyst</topic><topic>Electrocatalysts</topic><topic>Iron oxides</topic><topic>Manganese</topic><topic>Mn–Fe oxides</topic><topic>Morphology</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Pigments</topic><topic>Precursors</topic><topic>Prussian blue analogous</topic><topic>Pyrolysis</topic><topic>Synergistic effect</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Quanyin</creatorcontrib><creatorcontrib>Dong, Rui</creatorcontrib><creatorcontrib>Liu, Heng</creatorcontrib><creatorcontrib>Zhu, Anquan</creatorcontrib><creatorcontrib>Qiao, Lulu</creatorcontrib><creatorcontrib>Ma, Yongjin</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Xie, Jianping</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Quanyin</au><au>Dong, Rui</au><au>Liu, Heng</au><au>Zhu, Anquan</au><au>Qiao, Lulu</au><au>Ma, Yongjin</au><au>Wang, Juan</au><au>Xie, Jianping</au><au>Pan, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prussian blue analogue-derived Mn–Fe oxide nanocubes with controllable crystal structure and crystallinity as highly efficient OER electrocatalysts</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-04-15</date><risdate>2020</risdate><volume>820</volume><spage>153438</spage><pages>153438-</pages><artnum>153438</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>A series of ternary manganese iron oxides with different crystal structures, oxidation states and crystallinities were successfully fabricated by modulating the calcination conditions of Mn–Fe Prussian blue analogue (PBA) precursor (Mn3 [Fe(CN)6]2·nH2O). The obtained Mn–Fe oxides retained the nanocubic morphology of the PBA precursor, and a mesoporous structure was acquired as a result of gas molecule release during the pyrolysis process. Electrochemical oxygen evolution reaction (OER) activity of the as-prepared catalysts was tested, and among the bimetallic oxides, the catalyst that had a crystal structure similar to cubic bixbyite Mn1.2Fe0.8O3 (space group: Ia-3) with low crystallinity exhibited the most advanced OER activity. An overpotential of only 245 mV was required to achieve a current density of 10 mA cm−2, and the Tafel slope value was only 38 mV dec−1. The excellent OER activity is likely due to the hollow porous morphology of the samples, the synergistic effect of Mn and Fe, the defect-rich low crystallinity of the catalyst, and the cubic Mn1.2Fe0.8O3 structure (space group: Ia-3), which has an intrinsic activity superior to that of spinel Mn1.8Fe1.2O4. Mn-Fe PBA were used as precursor to obtain Mn-Fe ternary oxides with controllable crystal structure and crystallinity for oxygen evolution. [Display omitted] •Mn–Fe ternary oxide nanocubes were obtained via thermal decomposition of Mn–Fe Prussian blue analogue precursor.•Catalysts with different crystal structure and crystallinity could be obtained through modulating of calcination conditions.•Mn–Fe Prussian blue analogue precursor could be transformed to bimetallic oxides with cubic bixbyite structure.•Bixbyite Mn1.2Fe0.8O3 samples showed superior oxygen evolution reaction activity than spinel Mn1.8Fe1.2O4 structure samples.•Bimetallic Mn1.2Fe0.8O3 catalyst with low crystallinity shows the best electrocatalytic activity towards water oxidation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.153438</doi><orcidid>https://orcid.org/0000-0001-5212-6770</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2020-04, Vol.820, p.153438, Article 153438
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2354310326
source Elsevier
subjects Bimetals
Catalysts
Crystal structure
Crystallinity
Electrocatalyst
Electrocatalysts
Iron oxides
Manganese
Mn–Fe oxides
Morphology
Oxidation
Oxides
Oxygen evolution reaction
Oxygen evolution reactions
Pigments
Precursors
Prussian blue analogous
Pyrolysis
Synergistic effect
Water splitting
title Prussian blue analogue-derived Mn–Fe oxide nanocubes with controllable crystal structure and crystallinity as highly efficient OER electrocatalysts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prussian%20blue%20analogue-derived%20Mn%E2%80%93Fe%20oxide%20nanocubes%20with%20controllable%20crystal%20structure%20and%20crystallinity%20as%20highly%20efficient%20OER%20electrocatalysts&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Ma,%20Quanyin&rft.date=2020-04-15&rft.volume=820&rft.spage=153438&rft.pages=153438-&rft.artnum=153438&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.153438&rft_dat=%3Cproquest_cross%3E2354310326%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-81f1a66f358f9196472b68cf5e64ba614ec1ff7d58ab08b9e6d02abf6047d84f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2354310326&rft_id=info:pmid/&rfr_iscdi=true