Loading…
Towards Precise Intra-camera Supervised Person Re-identification
Intra-camera supervision (ICS) for person re-identification (Re-ID) assumes that identity labels are independently annotated within each camera view and no inter-camera identity association is labeled. It is a new setting proposed recently to reduce the burden of annotation while expect to maintain...
Saved in:
Published in: | arXiv.org 2020-12 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Intra-camera supervision (ICS) for person re-identification (Re-ID) assumes that identity labels are independently annotated within each camera view and no inter-camera identity association is labeled. It is a new setting proposed recently to reduce the burden of annotation while expect to maintain desirable Re-ID performance. However, the lack of inter-camera labels makes the ICS Re-ID problem much more challenging than the fully supervised counterpart. By investigating the characteristics of ICS, this paper proposes camera-specific non-parametric classifiers, together with a hybrid mining quintuplet loss, to perform intra-camera learning. Then, an inter-camera learning module consisting of a graph-based ID association step and a Re-ID model updating step is conducted. Extensive experiments on three large-scale Re-ID datasets show that our approach outperforms all existing ICS works by a great margin. Our approach performs even comparable to state-of-the-art fully supervised methods in two of the datasets. |
---|---|
ISSN: | 2331-8422 |