Loading…

Wasserstein Index Generation Model: Automatic generation of time-series index with application to Economic Policy Uncertainty

I propose a novel method, the Wasserstein Index Generation model (WIG), to generate a public sentiment index automatically. To test the model’s effectiveness, an application to generate Economic Policy Uncertainty (EPU) index is showcased. •Automatic time-series index generation as a black-box metho...

Full description

Saved in:
Bibliographic Details
Published in:Economics letters 2020-01, Vol.186, p.108874, Article 108874
Main Author: Xie, Fangzhou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-4ccf9c90d11a7d3e23eec530a12281149886ef61e2ded65a4b8dbe1f7f21b32e3
cites cdi_FETCH-LOGICAL-c402t-4ccf9c90d11a7d3e23eec530a12281149886ef61e2ded65a4b8dbe1f7f21b32e3
container_end_page
container_issue
container_start_page 108874
container_title Economics letters
container_volume 186
creator Xie, Fangzhou
description I propose a novel method, the Wasserstein Index Generation model (WIG), to generate a public sentiment index automatically. To test the model’s effectiveness, an application to generate Economic Policy Uncertainty (EPU) index is showcased. •Automatic time-series index generation as a black-box method.•Comparable results with existing ones, tested on EPU.•Applicable to any text corpus to produce sentiment indices.
doi_str_mv 10.1016/j.econlet.2019.108874
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2354805650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165176519304410</els_id><sourcerecordid>2354805650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-4ccf9c90d11a7d3e23eec530a12281149886ef61e2ded65a4b8dbe1f7f21b32e3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QQi4nppkJvNwI6XUWqjowuIypMkdTelMxiRVu_C_mzoFl64unHu--zgIXVIyooTm1-sRKNtuIIwYoVXUyrLIjtCAlkWaFGmRHaNB9PGEFjk_RWferwmhrCr4AH2_SO_B-QCmxfNWwxeeQQtOBmNb_GA1bG7weBtsExWFX_96tsbBNJBE2oDH5pf9NOENy67bGNW7gsXTeJxtIvxko7zDy1aBC9K0YXeOTmq58XBxqEO0vJs-T-6TxeNsPhkvEpURFpJMqbpSFdGUykKnwFIAxVMiKWMlpVlVljnUOQWmQedcZqtSr4DWRc3oKmWQDtFVP7dz9n0LPoi13bo2rhQs5VlJeM5JdPHepZz13kEtOmca6XaCErFPWqzFIWmxT1r0SUfutucgvvBhwAmvDMQvtXGggtDW_DPhB4R3jJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354805650</pqid></control><display><type>article</type><title>Wasserstein Index Generation Model: Automatic generation of time-series index with application to Economic Policy Uncertainty</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection</source><source>PAIS Index</source><creator>Xie, Fangzhou</creator><creatorcontrib>Xie, Fangzhou</creatorcontrib><description>I propose a novel method, the Wasserstein Index Generation model (WIG), to generate a public sentiment index automatically. To test the model’s effectiveness, an application to generate Economic Policy Uncertainty (EPU) index is showcased. •Automatic time-series index generation as a black-box method.•Comparable results with existing ones, tested on EPU.•Applicable to any text corpus to produce sentiment indices.</description><identifier>ISSN: 0165-1765</identifier><identifier>EISSN: 1873-7374</identifier><identifier>DOI: 10.1016/j.econlet.2019.108874</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Economic policy ; Economic Policy Uncertainty Index (EPU) ; Indexes ; Public opinion ; Singular Value Decomposition (SVD) ; Time series ; Uncertainty ; Wasserstein Dictionary Learning (WDL) ; Wasserstein Index Generation Model (WIG)</subject><ispartof>Economics letters, 2020-01, Vol.186, p.108874, Article 108874</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-4ccf9c90d11a7d3e23eec530a12281149886ef61e2ded65a4b8dbe1f7f21b32e3</citedby><cites>FETCH-LOGICAL-c402t-4ccf9c90d11a7d3e23eec530a12281149886ef61e2ded65a4b8dbe1f7f21b32e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27866,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Xie, Fangzhou</creatorcontrib><title>Wasserstein Index Generation Model: Automatic generation of time-series index with application to Economic Policy Uncertainty</title><title>Economics letters</title><description>I propose a novel method, the Wasserstein Index Generation model (WIG), to generate a public sentiment index automatically. To test the model’s effectiveness, an application to generate Economic Policy Uncertainty (EPU) index is showcased. •Automatic time-series index generation as a black-box method.•Comparable results with existing ones, tested on EPU.•Applicable to any text corpus to produce sentiment indices.</description><subject>Economic policy</subject><subject>Economic Policy Uncertainty Index (EPU)</subject><subject>Indexes</subject><subject>Public opinion</subject><subject>Singular Value Decomposition (SVD)</subject><subject>Time series</subject><subject>Uncertainty</subject><subject>Wasserstein Dictionary Learning (WDL)</subject><subject>Wasserstein Index Generation Model (WIG)</subject><issn>0165-1765</issn><issn>1873-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>8BJ</sourceid><recordid>eNqFkEtLAzEUhYMoWKs_QQi4nppkJvNwI6XUWqjowuIypMkdTelMxiRVu_C_mzoFl64unHu--zgIXVIyooTm1-sRKNtuIIwYoVXUyrLIjtCAlkWaFGmRHaNB9PGEFjk_RWferwmhrCr4AH2_SO_B-QCmxfNWwxeeQQtOBmNb_GA1bG7weBtsExWFX_96tsbBNJBE2oDH5pf9NOENy67bGNW7gsXTeJxtIvxko7zDy1aBC9K0YXeOTmq58XBxqEO0vJs-T-6TxeNsPhkvEpURFpJMqbpSFdGUykKnwFIAxVMiKWMlpVlVljnUOQWmQedcZqtSr4DWRc3oKmWQDtFVP7dz9n0LPoi13bo2rhQs5VlJeM5JdPHepZz13kEtOmca6XaCErFPWqzFIWmxT1r0SUfutucgvvBhwAmvDMQvtXGggtDW_DPhB4R3jJc</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Xie, Fangzhou</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TQ</scope><scope>8BJ</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202001</creationdate><title>Wasserstein Index Generation Model: Automatic generation of time-series index with application to Economic Policy Uncertainty</title><author>Xie, Fangzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-4ccf9c90d11a7d3e23eec530a12281149886ef61e2ded65a4b8dbe1f7f21b32e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Economic policy</topic><topic>Economic Policy Uncertainty Index (EPU)</topic><topic>Indexes</topic><topic>Public opinion</topic><topic>Singular Value Decomposition (SVD)</topic><topic>Time series</topic><topic>Uncertainty</topic><topic>Wasserstein Dictionary Learning (WDL)</topic><topic>Wasserstein Index Generation Model (WIG)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Fangzhou</creatorcontrib><collection>CrossRef</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Economics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Fangzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wasserstein Index Generation Model: Automatic generation of time-series index with application to Economic Policy Uncertainty</atitle><jtitle>Economics letters</jtitle><date>2020-01</date><risdate>2020</risdate><volume>186</volume><spage>108874</spage><pages>108874-</pages><artnum>108874</artnum><issn>0165-1765</issn><eissn>1873-7374</eissn><abstract>I propose a novel method, the Wasserstein Index Generation model (WIG), to generate a public sentiment index automatically. To test the model’s effectiveness, an application to generate Economic Policy Uncertainty (EPU) index is showcased. •Automatic time-series index generation as a black-box method.•Comparable results with existing ones, tested on EPU.•Applicable to any text corpus to produce sentiment indices.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.econlet.2019.108874</doi></addata></record>
fulltext fulltext
identifier ISSN: 0165-1765
ispartof Economics letters, 2020-01, Vol.186, p.108874, Article 108874
issn 0165-1765
1873-7374
language eng
recordid cdi_proquest_journals_2354805650
source International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection; PAIS Index
subjects Economic policy
Economic Policy Uncertainty Index (EPU)
Indexes
Public opinion
Singular Value Decomposition (SVD)
Time series
Uncertainty
Wasserstein Dictionary Learning (WDL)
Wasserstein Index Generation Model (WIG)
title Wasserstein Index Generation Model: Automatic generation of time-series index with application to Economic Policy Uncertainty
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T04%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wasserstein%20Index%20Generation%20Model:%20Automatic%20generation%20of%20time-series%20index%20with%20application%20to%20Economic%20Policy%20Uncertainty&rft.jtitle=Economics%20letters&rft.au=Xie,%20Fangzhou&rft.date=2020-01&rft.volume=186&rft.spage=108874&rft.pages=108874-&rft.artnum=108874&rft.issn=0165-1765&rft.eissn=1873-7374&rft_id=info:doi/10.1016/j.econlet.2019.108874&rft_dat=%3Cproquest_cross%3E2354805650%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-4ccf9c90d11a7d3e23eec530a12281149886ef61e2ded65a4b8dbe1f7f21b32e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2354805650&rft_id=info:pmid/&rfr_iscdi=true