Loading…
Aftershock probabilistic seismic hazard analysis for Bushehr province in Iran using ETAS model
Aftershock probabilistic seismic hazard analysis (APSHA) has a key role in risk management after a major earthquake. The main goal of the current study is to assess aftershock hazard in a strategic and earthquake-prone region of Iran (Bushehr province). Bushehr province is a strategic region in the...
Saved in:
Published in: | Natural hazards (Dordrecht) 2020-02, Vol.100 (3), p.1159-1170 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aftershock probabilistic seismic hazard analysis (APSHA) has a key role in risk management after a major earthquake. The main goal of the current study is to assess aftershock hazard in a strategic and earthquake-prone region of Iran (Bushehr province). Bushehr province is a strategic region in the Middle East due to its major petroleum export facilities, industrial corridors and the Bushehr nuclear power plant. To prepare APSHA for Bushehr province, a seismic source is selected which surrounds the active faults in the study area. A uniform earthquake catalog is collected which contains information on a total of 1143 earthquakes (Mw > 4) occurred in the study area from 1900 to 2018. Aftershock parameters are calculated using the epidemic-type aftershock sequence model. Aftershock sequences follow a non-homogenous Poisson’s process, and their magnitude and location depend on the size and location of the mainshock. In this study, APSHA is performed for the intervals of 1, 7 and 30 days after the mainshock, by assuming occurrence of mainshocks with return periods of 475 and 2475 years. The results show that the aftershock hazard curve is greater than that of the mainshock hazard curve. |
---|---|
ISSN: | 0921-030X 1573-0840 |
DOI: | 10.1007/s11069-020-03854-8 |