Loading…

Periodic-wave and semirational solutions for the (2 + 1)-dimensional Davey–Stewartson equations on the surface water waves of finite depth

The (2  +  1)-dimensional Davey–Stewartson equations concerning the evolution of surface water waves with finite depth are studied. We derive the periodic-wave solutions through the Kadomtsev–Petviashvili hierarchy reduction. We obtain the growing-decaying periodic wave and three kinds of breathers...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Physik 2020-04, Vol.71 (2), Article 46
Main Authors: Yuan, Yu-Qiang, Tian, Bo, Qu, Qi-Xing, Zhao, Xue-Hui, Du, Xia-Xia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-154d3d79b059f477be01ab87905530eedcbdd472c79ff95d480aaed3b918e363
cites cdi_FETCH-LOGICAL-c316t-154d3d79b059f477be01ab87905530eedcbdd472c79ff95d480aaed3b918e363
container_end_page
container_issue 2
container_start_page
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 71
creator Yuan, Yu-Qiang
Tian, Bo
Qu, Qi-Xing
Zhao, Xue-Hui
Du, Xia-Xia
description The (2  +  1)-dimensional Davey–Stewartson equations concerning the evolution of surface water waves with finite depth are studied. We derive the periodic-wave solutions through the Kadomtsev–Petviashvili hierarchy reduction. We obtain the growing-decaying periodic wave and three kinds of breathers via those solutions. We obtain the periodic wave takes on the growing and decaying property. Taking the long-wave limit on the periodic-wave solutions, we derive the semirational solutions describing the interaction of the rogue wave, lump, breather and periodic wave. We illustrate the lump and rogue wave and find that the rogue wave (lump) is the long-wave limit of the periodic wave (breather).
doi_str_mv 10.1007/s00033-020-1252-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2357509864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357509864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-154d3d79b059f477be01ab87905530eedcbdd472c79ff95d480aaed3b918e363</originalsourceid><addsrcrecordid>eNp1kEFO3DAUhi1EJabQA7CzxIYKuTzb8Xi8rCgFJCQqdfaWEz8zQTPJYDsdseME3fQCnIWj9CR1FKSuWNlP_r7_yT8hxxy-cAB9ngBASgYCGBdKsPkemfGqTAak2SczgKpiQmh1QD6m9FBozUHOyO8fGNvetw3buV9IXedpwk0bXW77zq1p6tfDeE009JHmFdJT8fpy9vrCPzPfbrBLE_et2E9_n__8zLhzMae-o_g4uEktw2imIQbXIN25jJGO-8pToKHt2ozU4zavjsiH4NYJP72dh2T5_XJ5cc1u765uLr7eskbyeWZcVV56bWpQJlRa1wjc1QttQCkJiL6pva-0aLQJwShfLcA59LI2fIFyLg_JyRS7jf3jgCnbh36I5R_JCqm0ArOYV4XiE9XEPqWIwW5ju3HxyXKwY-t2at2W1u3Yuh2TxeSkwnb3GP8nvy_9AzM7iTc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357509864</pqid></control><display><type>article</type><title>Periodic-wave and semirational solutions for the (2 + 1)-dimensional Davey–Stewartson equations on the surface water waves of finite depth</title><source>Springer Link</source><creator>Yuan, Yu-Qiang ; Tian, Bo ; Qu, Qi-Xing ; Zhao, Xue-Hui ; Du, Xia-Xia</creator><creatorcontrib>Yuan, Yu-Qiang ; Tian, Bo ; Qu, Qi-Xing ; Zhao, Xue-Hui ; Du, Xia-Xia</creatorcontrib><description>The (2  +  1)-dimensional Davey–Stewartson equations concerning the evolution of surface water waves with finite depth are studied. We derive the periodic-wave solutions through the Kadomtsev–Petviashvili hierarchy reduction. We obtain the growing-decaying periodic wave and three kinds of breathers via those solutions. We obtain the periodic wave takes on the growing and decaying property. Taking the long-wave limit on the periodic-wave solutions, we derive the semirational solutions describing the interaction of the rogue wave, lump, breather and periodic wave. We illustrate the lump and rogue wave and find that the rogue wave (lump) is the long-wave limit of the periodic wave (breather).</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-020-1252-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Breathers ; Engineering ; Mathematical analysis ; Mathematical Methods in Physics ; Surface water ; Theoretical and Applied Mechanics ; Water waves</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2020-04, Vol.71 (2), Article 46</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-154d3d79b059f477be01ab87905530eedcbdd472c79ff95d480aaed3b918e363</citedby><cites>FETCH-LOGICAL-c316t-154d3d79b059f477be01ab87905530eedcbdd472c79ff95d480aaed3b918e363</cites><orcidid>0000-0002-9836-4966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yuan, Yu-Qiang</creatorcontrib><creatorcontrib>Tian, Bo</creatorcontrib><creatorcontrib>Qu, Qi-Xing</creatorcontrib><creatorcontrib>Zhao, Xue-Hui</creatorcontrib><creatorcontrib>Du, Xia-Xia</creatorcontrib><title>Periodic-wave and semirational solutions for the (2 + 1)-dimensional Davey–Stewartson equations on the surface water waves of finite depth</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>The (2  +  1)-dimensional Davey–Stewartson equations concerning the evolution of surface water waves with finite depth are studied. We derive the periodic-wave solutions through the Kadomtsev–Petviashvili hierarchy reduction. We obtain the growing-decaying periodic wave and three kinds of breathers via those solutions. We obtain the periodic wave takes on the growing and decaying property. Taking the long-wave limit on the periodic-wave solutions, we derive the semirational solutions describing the interaction of the rogue wave, lump, breather and periodic wave. We illustrate the lump and rogue wave and find that the rogue wave (lump) is the long-wave limit of the periodic wave (breather).</description><subject>Breathers</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Surface water</subject><subject>Theoretical and Applied Mechanics</subject><subject>Water waves</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFO3DAUhi1EJabQA7CzxIYKuTzb8Xi8rCgFJCQqdfaWEz8zQTPJYDsdseME3fQCnIWj9CR1FKSuWNlP_r7_yT8hxxy-cAB9ngBASgYCGBdKsPkemfGqTAak2SczgKpiQmh1QD6m9FBozUHOyO8fGNvetw3buV9IXedpwk0bXW77zq1p6tfDeE009JHmFdJT8fpy9vrCPzPfbrBLE_et2E9_n__8zLhzMae-o_g4uEktw2imIQbXIN25jJGO-8pToKHt2ozU4zavjsiH4NYJP72dh2T5_XJ5cc1u765uLr7eskbyeWZcVV56bWpQJlRa1wjc1QttQCkJiL6pva-0aLQJwShfLcA59LI2fIFyLg_JyRS7jf3jgCnbh36I5R_JCqm0ArOYV4XiE9XEPqWIwW5ju3HxyXKwY-t2at2W1u3Yuh2TxeSkwnb3GP8nvy_9AzM7iTc</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Yuan, Yu-Qiang</creator><creator>Tian, Bo</creator><creator>Qu, Qi-Xing</creator><creator>Zhao, Xue-Hui</creator><creator>Du, Xia-Xia</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9836-4966</orcidid></search><sort><creationdate>20200401</creationdate><title>Periodic-wave and semirational solutions for the (2 + 1)-dimensional Davey–Stewartson equations on the surface water waves of finite depth</title><author>Yuan, Yu-Qiang ; Tian, Bo ; Qu, Qi-Xing ; Zhao, Xue-Hui ; Du, Xia-Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-154d3d79b059f477be01ab87905530eedcbdd472c79ff95d480aaed3b918e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Breathers</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Surface water</topic><topic>Theoretical and Applied Mechanics</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Yu-Qiang</creatorcontrib><creatorcontrib>Tian, Bo</creatorcontrib><creatorcontrib>Qu, Qi-Xing</creatorcontrib><creatorcontrib>Zhao, Xue-Hui</creatorcontrib><creatorcontrib>Du, Xia-Xia</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Yu-Qiang</au><au>Tian, Bo</au><au>Qu, Qi-Xing</au><au>Zhao, Xue-Hui</au><au>Du, Xia-Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic-wave and semirational solutions for the (2 + 1)-dimensional Davey–Stewartson equations on the surface water waves of finite depth</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>71</volume><issue>2</issue><artnum>46</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>The (2  +  1)-dimensional Davey–Stewartson equations concerning the evolution of surface water waves with finite depth are studied. We derive the periodic-wave solutions through the Kadomtsev–Petviashvili hierarchy reduction. We obtain the growing-decaying periodic wave and three kinds of breathers via those solutions. We obtain the periodic wave takes on the growing and decaying property. Taking the long-wave limit on the periodic-wave solutions, we derive the semirational solutions describing the interaction of the rogue wave, lump, breather and periodic wave. We illustrate the lump and rogue wave and find that the rogue wave (lump) is the long-wave limit of the periodic wave (breather).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-020-1252-6</doi><orcidid>https://orcid.org/0000-0002-9836-4966</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2020-04, Vol.71 (2), Article 46
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2357509864
source Springer Link
subjects Breathers
Engineering
Mathematical analysis
Mathematical Methods in Physics
Surface water
Theoretical and Applied Mechanics
Water waves
title Periodic-wave and semirational solutions for the (2 + 1)-dimensional Davey–Stewartson equations on the surface water waves of finite depth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic-wave%20and%20semirational%20solutions%20for%20the%20(2%C2%A0+%C2%A01)-dimensional%20Davey%E2%80%93Stewartson%20equations%20on%20the%20surface%20water%20waves%20of%20finite%20depth&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Yuan,%20Yu-Qiang&rft.date=2020-04-01&rft.volume=71&rft.issue=2&rft.artnum=46&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-020-1252-6&rft_dat=%3Cproquest_cross%3E2357509864%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-154d3d79b059f477be01ab87905530eedcbdd472c79ff95d480aaed3b918e363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2357509864&rft_id=info:pmid/&rfr_iscdi=true