Loading…
Effect of Zeolite on Fischer–Tropsch Synthesis in the Presence of a Catalyst Based on Skeletal Cobalt
The joint effect of skeletal cobalt and zeolite on the main catalytic parameters of a pelletized composite catalyst has been studied. All samples contain 50 wt % fine metallic aluminum powder. The amounts of other components are as follows: 20–30 wt % binder (boehmite), 5–20 wt % Beta zeolite in the...
Saved in:
Published in: | Petroleum chemistry 2020, Vol.60 (1), p.69-74 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The joint effect of skeletal cobalt and zeolite on the main catalytic parameters of a pelletized composite catalyst has been studied. All samples contain 50 wt % fine metallic aluminum powder. The amounts of other components are as follows: 20–30 wt % binder (boehmite), 5–20 wt % Beta zeolite in the H form (SiO
2
/Al
2
O
3
= 38), and 10–20 wt % fine skeletal cobalt. The reference catalyst does not contain any zeolite. All the catalysts exhibit activity in Fischer–Tropsch synthesis and secondary transformations, the intensity of which depends on the zeolite/cobalt ratio. The composition of the resulting hydrocarbons (HCs) varies over a wide range; in particular, the content of
n
-paraffins and olefins is 39–88 and 3–38%, respectively. The chain growth probability varies in a range of 0.65–0.83 depending on the zeolite/cobalt ratio and the synthesis conditions. It has been shown that the catalysts studied are superior advantage to other cobalt–zeolite catalysts in CO conversion, specific activity, productivity, and stability. |
---|---|
ISSN: | 0965-5441 1555-6239 |
DOI: | 10.1134/S0965544120010028 |