Loading…

Dry Mechanochemical Synthesis of Highly Luminescent, Blue and Green Hybrid Perovskite Solids

A simple method to obtain bright photoluminescent wide bandgap mixed‐halide 3D perovskites is reported. The materials are prepared by dry mechanochemical synthesis (ball‐milling) starting from neat binary precursors, and show enhanced photoluminescence upon the addition of an adamantane derivative i...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials 2020-02, Vol.8 (4), p.n/a
Main Authors: Martínez‐Sarti, Laura, Palazon, Francisco, Sessolo, Michele, Bolink, Henk J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4234-3025b4ce423048e38227836f06fdeaee53524b2dcfacfb6654ff4f921802d7193
cites cdi_FETCH-LOGICAL-c4234-3025b4ce423048e38227836f06fdeaee53524b2dcfacfb6654ff4f921802d7193
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced optical materials
container_volume 8
creator Martínez‐Sarti, Laura
Palazon, Francisco
Sessolo, Michele
Bolink, Henk J.
description A simple method to obtain bright photoluminescent wide bandgap mixed‐halide 3D perovskites is reported. The materials are prepared by dry mechanochemical synthesis (ball‐milling) starting from neat binary precursors, and show enhanced photoluminescence upon the addition of an adamantane derivative in the precursors' mixture. The structural characterization suggests that the additive does not participate in the crystal structure of the perovskite, which remains unvaried even with high loading of amantadine hydrochloride. By simple stoichiometric control of the halide precursors, the photoluminescence can be finely tuned from the UV to the green part of the visible spectrum. Photoluminescence quantum yields as high as 29% and 5% have been obtained for green‐ and blue‐emitting perovskite solids, even at very low excitation densities. Bright photoluminescent wide bandgap mixed‐halide 3D perovskites are prepared by dry mechanochemical synthesis starting from neat binary precursors, and show enhanced photoluminescence upon the addition of an adamantane derivative in the precursors' mixture. Photoluminescence quantum yields as high as 29% and 7% have been obtained for green‐ and blue‐emitting perovskite solids.
doi_str_mv 10.1002/adom.201901494
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2357522401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357522401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4234-3025b4ce423048e38227836f06fdeaee53524b2dcfacfb6654ff4f921802d7193</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMoWGq3rgNubc1rXsvaaiu0VKjuhJDJ3Dip86jJjDL_3ikVdefq3g_OuRc-hC4pmVBC2I3K6nLCCE0IFYk4QQNGk2BMSURP_-znaOT9jhDSB56IaIBe5q7Da9C5qmqdQ2m1KvC2q5ocvPW4NnhpX_Oiw6u2tBV4DVVzjW-LFrCqMrxwABVedqmzGX4EV3_4N9sA3taFzfwFOjOq8DD6nkP0fH_3NFuOV5vFw2y6GmvBuBhzwoJUaOgDETHwmLEo5qEhoclAAQQ8YCJlmTZKmzQMA2GMMAmjMWFZRBM-RFfHu3tXv7fgG7mrW1f1LyXjQRQwJgjtqcmR0q723oGRe2dL5TpJiTyUKA8lyp8SeyE5Cp-2gO4fWk7nm_Wv-wUSjHU6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357522401</pqid></control><display><type>article</type><title>Dry Mechanochemical Synthesis of Highly Luminescent, Blue and Green Hybrid Perovskite Solids</title><source>Wiley</source><creator>Martínez‐Sarti, Laura ; Palazon, Francisco ; Sessolo, Michele ; Bolink, Henk J.</creator><creatorcontrib>Martínez‐Sarti, Laura ; Palazon, Francisco ; Sessolo, Michele ; Bolink, Henk J.</creatorcontrib><description>A simple method to obtain bright photoluminescent wide bandgap mixed‐halide 3D perovskites is reported. The materials are prepared by dry mechanochemical synthesis (ball‐milling) starting from neat binary precursors, and show enhanced photoluminescence upon the addition of an adamantane derivative in the precursors' mixture. The structural characterization suggests that the additive does not participate in the crystal structure of the perovskite, which remains unvaried even with high loading of amantadine hydrochloride. By simple stoichiometric control of the halide precursors, the photoluminescence can be finely tuned from the UV to the green part of the visible spectrum. Photoluminescence quantum yields as high as 29% and 5% have been obtained for green‐ and blue‐emitting perovskite solids, even at very low excitation densities. Bright photoluminescent wide bandgap mixed‐halide 3D perovskites are prepared by dry mechanochemical synthesis starting from neat binary precursors, and show enhanced photoluminescence upon the addition of an adamantane derivative in the precursors' mixture. Photoluminescence quantum yields as high as 29% and 7% have been obtained for green‐ and blue‐emitting perovskite solids.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.201901494</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Amantadine ; blue‐emitting perovskites ; Crystal structure ; Materials science ; mechanochemical synthesis ; Optics ; passivation ; Perovskites ; Photoluminescence ; Precursors ; Structural analysis ; Synthesis ; Visible spectrum</subject><ispartof>Advanced optical materials, 2020-02, Vol.8 (4), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4234-3025b4ce423048e38227836f06fdeaee53524b2dcfacfb6654ff4f921802d7193</citedby><cites>FETCH-LOGICAL-c4234-3025b4ce423048e38227836f06fdeaee53524b2dcfacfb6654ff4f921802d7193</cites><orcidid>0000-0002-1503-5965 ; 0000-0002-2218-5080 ; 0000-0001-9784-6253 ; 0000-0002-9189-3005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Martínez‐Sarti, Laura</creatorcontrib><creatorcontrib>Palazon, Francisco</creatorcontrib><creatorcontrib>Sessolo, Michele</creatorcontrib><creatorcontrib>Bolink, Henk J.</creatorcontrib><title>Dry Mechanochemical Synthesis of Highly Luminescent, Blue and Green Hybrid Perovskite Solids</title><title>Advanced optical materials</title><description>A simple method to obtain bright photoluminescent wide bandgap mixed‐halide 3D perovskites is reported. The materials are prepared by dry mechanochemical synthesis (ball‐milling) starting from neat binary precursors, and show enhanced photoluminescence upon the addition of an adamantane derivative in the precursors' mixture. The structural characterization suggests that the additive does not participate in the crystal structure of the perovskite, which remains unvaried even with high loading of amantadine hydrochloride. By simple stoichiometric control of the halide precursors, the photoluminescence can be finely tuned from the UV to the green part of the visible spectrum. Photoluminescence quantum yields as high as 29% and 5% have been obtained for green‐ and blue‐emitting perovskite solids, even at very low excitation densities. Bright photoluminescent wide bandgap mixed‐halide 3D perovskites are prepared by dry mechanochemical synthesis starting from neat binary precursors, and show enhanced photoluminescence upon the addition of an adamantane derivative in the precursors' mixture. Photoluminescence quantum yields as high as 29% and 7% have been obtained for green‐ and blue‐emitting perovskite solids.</description><subject>Amantadine</subject><subject>blue‐emitting perovskites</subject><subject>Crystal structure</subject><subject>Materials science</subject><subject>mechanochemical synthesis</subject><subject>Optics</subject><subject>passivation</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Precursors</subject><subject>Structural analysis</subject><subject>Synthesis</subject><subject>Visible spectrum</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEURoMoWGq3rgNubc1rXsvaaiu0VKjuhJDJ3Dip86jJjDL_3ikVdefq3g_OuRc-hC4pmVBC2I3K6nLCCE0IFYk4QQNGk2BMSURP_-znaOT9jhDSB56IaIBe5q7Da9C5qmqdQ2m1KvC2q5ocvPW4NnhpX_Oiw6u2tBV4DVVzjW-LFrCqMrxwABVedqmzGX4EV3_4N9sA3taFzfwFOjOq8DD6nkP0fH_3NFuOV5vFw2y6GmvBuBhzwoJUaOgDETHwmLEo5qEhoclAAQQ8YCJlmTZKmzQMA2GMMAmjMWFZRBM-RFfHu3tXv7fgG7mrW1f1LyXjQRQwJgjtqcmR0q723oGRe2dL5TpJiTyUKA8lyp8SeyE5Cp-2gO4fWk7nm_Wv-wUSjHU6</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Martínez‐Sarti, Laura</creator><creator>Palazon, Francisco</creator><creator>Sessolo, Michele</creator><creator>Bolink, Henk J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1503-5965</orcidid><orcidid>https://orcid.org/0000-0002-2218-5080</orcidid><orcidid>https://orcid.org/0000-0001-9784-6253</orcidid><orcidid>https://orcid.org/0000-0002-9189-3005</orcidid></search><sort><creationdate>20200201</creationdate><title>Dry Mechanochemical Synthesis of Highly Luminescent, Blue and Green Hybrid Perovskite Solids</title><author>Martínez‐Sarti, Laura ; Palazon, Francisco ; Sessolo, Michele ; Bolink, Henk J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4234-3025b4ce423048e38227836f06fdeaee53524b2dcfacfb6654ff4f921802d7193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amantadine</topic><topic>blue‐emitting perovskites</topic><topic>Crystal structure</topic><topic>Materials science</topic><topic>mechanochemical synthesis</topic><topic>Optics</topic><topic>passivation</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Precursors</topic><topic>Structural analysis</topic><topic>Synthesis</topic><topic>Visible spectrum</topic><toplevel>online_resources</toplevel><creatorcontrib>Martínez‐Sarti, Laura</creatorcontrib><creatorcontrib>Palazon, Francisco</creatorcontrib><creatorcontrib>Sessolo, Michele</creatorcontrib><creatorcontrib>Bolink, Henk J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez‐Sarti, Laura</au><au>Palazon, Francisco</au><au>Sessolo, Michele</au><au>Bolink, Henk J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dry Mechanochemical Synthesis of Highly Luminescent, Blue and Green Hybrid Perovskite Solids</atitle><jtitle>Advanced optical materials</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>8</volume><issue>4</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>A simple method to obtain bright photoluminescent wide bandgap mixed‐halide 3D perovskites is reported. The materials are prepared by dry mechanochemical synthesis (ball‐milling) starting from neat binary precursors, and show enhanced photoluminescence upon the addition of an adamantane derivative in the precursors' mixture. The structural characterization suggests that the additive does not participate in the crystal structure of the perovskite, which remains unvaried even with high loading of amantadine hydrochloride. By simple stoichiometric control of the halide precursors, the photoluminescence can be finely tuned from the UV to the green part of the visible spectrum. Photoluminescence quantum yields as high as 29% and 5% have been obtained for green‐ and blue‐emitting perovskite solids, even at very low excitation densities. Bright photoluminescent wide bandgap mixed‐halide 3D perovskites are prepared by dry mechanochemical synthesis starting from neat binary precursors, and show enhanced photoluminescence upon the addition of an adamantane derivative in the precursors' mixture. Photoluminescence quantum yields as high as 29% and 7% have been obtained for green‐ and blue‐emitting perovskite solids.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.201901494</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1503-5965</orcidid><orcidid>https://orcid.org/0000-0002-2218-5080</orcidid><orcidid>https://orcid.org/0000-0001-9784-6253</orcidid><orcidid>https://orcid.org/0000-0002-9189-3005</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2020-02, Vol.8 (4), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2357522401
source Wiley
subjects Amantadine
blue‐emitting perovskites
Crystal structure
Materials science
mechanochemical synthesis
Optics
passivation
Perovskites
Photoluminescence
Precursors
Structural analysis
Synthesis
Visible spectrum
title Dry Mechanochemical Synthesis of Highly Luminescent, Blue and Green Hybrid Perovskite Solids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dry%20Mechanochemical%20Synthesis%20of%20Highly%20Luminescent,%20Blue%20and%20Green%20Hybrid%20Perovskite%20Solids&rft.jtitle=Advanced%20optical%20materials&rft.au=Mart%C3%ADnez%E2%80%90Sarti,%20Laura&rft.date=2020-02-01&rft.volume=8&rft.issue=4&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.201901494&rft_dat=%3Cproquest_cross%3E2357522401%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4234-3025b4ce423048e38227836f06fdeaee53524b2dcfacfb6654ff4f921802d7193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2357522401&rft_id=info:pmid/&rfr_iscdi=true