Loading…

Kinematics of the O vi Circumgalactic Medium: Halo Mass Dependence and Outflow Signatures

We probe the high-ionization circumgalactic medium by examining absorber kinematics, absorber-galaxy kinematics, and average absorption profiles of 31 O vi absorbers from the "Multiphase Galaxy Halos" Survey as a function of halo mass, redshift, inclination, and azimuthal angle. The galaxi...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2019-11, Vol.886 (1), p.66
Main Authors: Ng, Mason, Nielsen, Nikole M., Kacprzak, Glenn G., Pointon, Stephanie K., Muzahid, Sowgat, Churchill, Christopher W., Charlton, Jane C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We probe the high-ionization circumgalactic medium by examining absorber kinematics, absorber-galaxy kinematics, and average absorption profiles of 31 O vi absorbers from the "Multiphase Galaxy Halos" Survey as a function of halo mass, redshift, inclination, and azimuthal angle. The galaxies are isolated at 0.12 < zgal < 0.66 and are probed by a background quasar within D 200 kpc. Each absorber-galaxy pair has Hubble Space Telescope images and COS quasar spectra, and most galaxy redshifts have been accurately measured from Keck/ESI spectra. Using the pixel-velocity two-point correlation function (TPCF) method, we find that O vi absorber kinematics have a strong halo mass dependence. Absorbers hosted by ∼L* galaxies have the largest velocity dispersions, which we interpret to be that the halo virial temperature closely matches the temperature at which the collisionally ionized O vi fraction peaks. Lower-mass galaxies and group environments have smaller velocity dispersions. Total column densities follow the same behavior, consistent with theoretical findings. After normalizing out the observed mass dependence, we studied absorber-galaxy kinematics with a modified TPCF and found nonvirialized motions due to outflowing gas. Edge-on minor-axis gas has large optical depths concentrated near the galaxy systemic velocity as expected for bipolar outflows, while face-on minor-axis gas has a smoothly decreasing optical depth distribution out to large normalized absorber-galaxy velocities, suggestive of decelerating outflowing gas. Accreting gas signatures are not observed owing to "kinematic blurring," in which multiple line-of-sight structures are observed. These results indicate that galaxy mass dominates O vi properties over baryon cycle processes.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ab48eb