Loading…
Kinematics of the O vi Circumgalactic Medium: Halo Mass Dependence and Outflow Signatures
We probe the high-ionization circumgalactic medium by examining absorber kinematics, absorber-galaxy kinematics, and average absorption profiles of 31 O vi absorbers from the "Multiphase Galaxy Halos" Survey as a function of halo mass, redshift, inclination, and azimuthal angle. The galaxi...
Saved in:
Published in: | The Astrophysical journal 2019-11, Vol.886 (1), p.66 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We probe the high-ionization circumgalactic medium by examining absorber kinematics, absorber-galaxy kinematics, and average absorption profiles of 31 O vi absorbers from the "Multiphase Galaxy Halos" Survey as a function of halo mass, redshift, inclination, and azimuthal angle. The galaxies are isolated at 0.12 < zgal < 0.66 and are probed by a background quasar within D 200 kpc. Each absorber-galaxy pair has Hubble Space Telescope images and COS quasar spectra, and most galaxy redshifts have been accurately measured from Keck/ESI spectra. Using the pixel-velocity two-point correlation function (TPCF) method, we find that O vi absorber kinematics have a strong halo mass dependence. Absorbers hosted by ∼L* galaxies have the largest velocity dispersions, which we interpret to be that the halo virial temperature closely matches the temperature at which the collisionally ionized O vi fraction peaks. Lower-mass galaxies and group environments have smaller velocity dispersions. Total column densities follow the same behavior, consistent with theoretical findings. After normalizing out the observed mass dependence, we studied absorber-galaxy kinematics with a modified TPCF and found nonvirialized motions due to outflowing gas. Edge-on minor-axis gas has large optical depths concentrated near the galaxy systemic velocity as expected for bipolar outflows, while face-on minor-axis gas has a smoothly decreasing optical depth distribution out to large normalized absorber-galaxy velocities, suggestive of decelerating outflowing gas. Accreting gas signatures are not observed owing to "kinematic blurring," in which multiple line-of-sight structures are observed. These results indicate that galaxy mass dominates O vi properties over baryon cycle processes. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/ab48eb |