Loading…
Constraints on axions from neutron star in HESS J1731-347
To constrain the allowed range for the axion decay constant fa or, equivalently, for the axion mass ma, we consider the cooling of a neutron star with strong proton superfluidity and normal (non-superfluid) neutrons inside its core and without strong magnetic field, by analogy with the observed supe...
Saved in:
Published in: | Journal of cosmology and astroparticle physics 2019-11, Vol.2019 (11), p.31-31 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-836bcb97cd2492c0bf653e07a02cdb7f22f55dccd1008960abfe05098591692b3 |
---|---|
cites | |
container_end_page | 31 |
container_issue | 11 |
container_start_page | 31 |
container_title | Journal of cosmology and astroparticle physics |
container_volume | 2019 |
creator | Leinson, Lev B. |
description | To constrain the allowed range for the axion decay constant fa or, equivalently, for the axion mass ma, we consider the cooling of a neutron star with strong proton superfluidity and normal (non-superfluid) neutrons inside its core and without strong magnetic field, by analogy with the observed supernova remnant in HESS J1731-347. For this specific case, we demonstrate that after the thermal relaxation is over, the hydrostatic structure of the neutron star can be well described with the aid of solution of Einstein field equations, applied to a sphere of fluid in hydrostatic equilibrium, derived by Tolman. The internal temperature of the neutron star is calculated assuming that the cooling occurs dominantly due to production of neutrino pairs and axions in the nn-bremsstrahlung. To impose a constraint to the axion decay constant the fact is used that the currently observed neutron star surface temperature does not deviate from the neutrino cooling scenario. For the KSVZ-axion model we find that fa>1.9×108 GeV, while for the DFSZ-axion model we obtain fa>4.7×109 GeV. |
doi_str_mv | 10.1088/1475-7516/2019/11/031 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2357582747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357582747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-836bcb97cd2492c0bf653e07a02cdb7f22f55dccd1008960abfe05098591692b3</originalsourceid><addsrcrecordid>eNpNkFFLwzAQgIMoOKc_QQj4XHuXNE3yKGM6ZeDD9DmkaQMdrplJC_rvTZmIT3d8fNzBR8gtwj2CUiVWUhRSYF0yQF0ilsDxjCz--Pm__ZJcpbQHYDXnakH0KgxpjLYfxkTDQO1XnwH1MRzo0E1jzCyNNtJ-oJv1bkdfUHIseCWvyYW3H6m7-Z1L8v64flttiu3r0_PqYVu4LI2F4nXjGi1dyyrNHDS-FrwDaYG5tpGeMS9E61yLAErXYBvfgQCthMZas4Yvyd3p7jGGz6lLo9mHKQ75pWFcSKGYrGS2xMlyMaQUO2-OsT_Y-G0QzFzJzAXMXMDMlQyiyZX4D9pmV2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357582747</pqid></control><display><type>article</type><title>Constraints on axions from neutron star in HESS J1731-347</title><source>Institute of Physics</source><creator>Leinson, Lev B.</creator><creatorcontrib>Leinson, Lev B.</creatorcontrib><description>To constrain the allowed range for the axion decay constant fa or, equivalently, for the axion mass ma, we consider the cooling of a neutron star with strong proton superfluidity and normal (non-superfluid) neutrons inside its core and without strong magnetic field, by analogy with the observed supernova remnant in HESS J1731-347. For this specific case, we demonstrate that after the thermal relaxation is over, the hydrostatic structure of the neutron star can be well described with the aid of solution of Einstein field equations, applied to a sphere of fluid in hydrostatic equilibrium, derived by Tolman. The internal temperature of the neutron star is calculated assuming that the cooling occurs dominantly due to production of neutrino pairs and axions in the nn-bremsstrahlung. To impose a constraint to the axion decay constant the fact is used that the currently observed neutron star surface temperature does not deviate from the neutrino cooling scenario. For the KSVZ-axion model we find that fa>1.9×108 GeV, while for the DFSZ-axion model we obtain fa>4.7×109 GeV.</description><identifier>ISSN: 1475-7516</identifier><identifier>EISSN: 1475-7516</identifier><identifier>DOI: 10.1088/1475-7516/2019/11/031</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Bremsstrahlung ; Cooling ; Decay ; Decay rate ; Einstein equations ; Fluids ; Magnetic fields ; Neutrinos ; Neutron stars ; Neutrons ; Superfluidity ; Supernova remnants ; Temperature ; Thermal relaxation</subject><ispartof>Journal of cosmology and astroparticle physics, 2019-11, Vol.2019 (11), p.31-31</ispartof><rights>Copyright IOP Publishing Nov 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-836bcb97cd2492c0bf653e07a02cdb7f22f55dccd1008960abfe05098591692b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Leinson, Lev B.</creatorcontrib><title>Constraints on axions from neutron star in HESS J1731-347</title><title>Journal of cosmology and astroparticle physics</title><description>To constrain the allowed range for the axion decay constant fa or, equivalently, for the axion mass ma, we consider the cooling of a neutron star with strong proton superfluidity and normal (non-superfluid) neutrons inside its core and without strong magnetic field, by analogy with the observed supernova remnant in HESS J1731-347. For this specific case, we demonstrate that after the thermal relaxation is over, the hydrostatic structure of the neutron star can be well described with the aid of solution of Einstein field equations, applied to a sphere of fluid in hydrostatic equilibrium, derived by Tolman. The internal temperature of the neutron star is calculated assuming that the cooling occurs dominantly due to production of neutrino pairs and axions in the nn-bremsstrahlung. To impose a constraint to the axion decay constant the fact is used that the currently observed neutron star surface temperature does not deviate from the neutrino cooling scenario. For the KSVZ-axion model we find that fa>1.9×108 GeV, while for the DFSZ-axion model we obtain fa>4.7×109 GeV.</description><subject>Bremsstrahlung</subject><subject>Cooling</subject><subject>Decay</subject><subject>Decay rate</subject><subject>Einstein equations</subject><subject>Fluids</subject><subject>Magnetic fields</subject><subject>Neutrinos</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Superfluidity</subject><subject>Supernova remnants</subject><subject>Temperature</subject><subject>Thermal relaxation</subject><issn>1475-7516</issn><issn>1475-7516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAQgIMoOKc_QQj4XHuXNE3yKGM6ZeDD9DmkaQMdrplJC_rvTZmIT3d8fNzBR8gtwj2CUiVWUhRSYF0yQF0ilsDxjCz--Pm__ZJcpbQHYDXnakH0KgxpjLYfxkTDQO1XnwH1MRzo0E1jzCyNNtJ-oJv1bkdfUHIseCWvyYW3H6m7-Z1L8v64flttiu3r0_PqYVu4LI2F4nXjGi1dyyrNHDS-FrwDaYG5tpGeMS9E61yLAErXYBvfgQCthMZas4Yvyd3p7jGGz6lLo9mHKQ75pWFcSKGYrGS2xMlyMaQUO2-OsT_Y-G0QzFzJzAXMXMDMlQyiyZX4D9pmV2U</recordid><startdate>20191125</startdate><enddate>20191125</enddate><creator>Leinson, Lev B.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191125</creationdate><title>Constraints on axions from neutron star in HESS J1731-347</title><author>Leinson, Lev B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-836bcb97cd2492c0bf653e07a02cdb7f22f55dccd1008960abfe05098591692b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bremsstrahlung</topic><topic>Cooling</topic><topic>Decay</topic><topic>Decay rate</topic><topic>Einstein equations</topic><topic>Fluids</topic><topic>Magnetic fields</topic><topic>Neutrinos</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Superfluidity</topic><topic>Supernova remnants</topic><topic>Temperature</topic><topic>Thermal relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leinson, Lev B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of cosmology and astroparticle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leinson, Lev B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraints on axions from neutron star in HESS J1731-347</atitle><jtitle>Journal of cosmology and astroparticle physics</jtitle><date>2019-11-25</date><risdate>2019</risdate><volume>2019</volume><issue>11</issue><spage>31</spage><epage>31</epage><pages>31-31</pages><issn>1475-7516</issn><eissn>1475-7516</eissn><abstract>To constrain the allowed range for the axion decay constant fa or, equivalently, for the axion mass ma, we consider the cooling of a neutron star with strong proton superfluidity and normal (non-superfluid) neutrons inside its core and without strong magnetic field, by analogy with the observed supernova remnant in HESS J1731-347. For this specific case, we demonstrate that after the thermal relaxation is over, the hydrostatic structure of the neutron star can be well described with the aid of solution of Einstein field equations, applied to a sphere of fluid in hydrostatic equilibrium, derived by Tolman. The internal temperature of the neutron star is calculated assuming that the cooling occurs dominantly due to production of neutrino pairs and axions in the nn-bremsstrahlung. To impose a constraint to the axion decay constant the fact is used that the currently observed neutron star surface temperature does not deviate from the neutrino cooling scenario. For the KSVZ-axion model we find that fa>1.9×108 GeV, while for the DFSZ-axion model we obtain fa>4.7×109 GeV.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1475-7516/2019/11/031</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-7516 |
ispartof | Journal of cosmology and astroparticle physics, 2019-11, Vol.2019 (11), p.31-31 |
issn | 1475-7516 1475-7516 |
language | eng |
recordid | cdi_proquest_journals_2357582747 |
source | Institute of Physics |
subjects | Bremsstrahlung Cooling Decay Decay rate Einstein equations Fluids Magnetic fields Neutrinos Neutron stars Neutrons Superfluidity Supernova remnants Temperature Thermal relaxation |
title | Constraints on axions from neutron star in HESS J1731-347 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraints%20on%20axions%20from%20neutron%20star%20in%20HESS%20J1731-347&rft.jtitle=Journal%20of%20cosmology%20and%20astroparticle%20physics&rft.au=Leinson,%20Lev%20B.&rft.date=2019-11-25&rft.volume=2019&rft.issue=11&rft.spage=31&rft.epage=31&rft.pages=31-31&rft.issn=1475-7516&rft.eissn=1475-7516&rft_id=info:doi/10.1088/1475-7516/2019/11/031&rft_dat=%3Cproquest_cross%3E2357582747%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-836bcb97cd2492c0bf653e07a02cdb7f22f55dccd1008960abfe05098591692b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2357582747&rft_id=info:pmid/&rfr_iscdi=true |