Loading…

Constraints on axions from neutron star in HESS J1731-347

To constrain the allowed range for the axion decay constant fa or, equivalently, for the axion mass ma, we consider the cooling of a neutron star with strong proton superfluidity and normal (non-superfluid) neutrons inside its core and without strong magnetic field, by analogy with the observed supe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cosmology and astroparticle physics 2019-11, Vol.2019 (11), p.31-31
Main Author: Leinson, Lev B.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-836bcb97cd2492c0bf653e07a02cdb7f22f55dccd1008960abfe05098591692b3
cites
container_end_page 31
container_issue 11
container_start_page 31
container_title Journal of cosmology and astroparticle physics
container_volume 2019
creator Leinson, Lev B.
description To constrain the allowed range for the axion decay constant fa or, equivalently, for the axion mass ma, we consider the cooling of a neutron star with strong proton superfluidity and normal (non-superfluid) neutrons inside its core and without strong magnetic field, by analogy with the observed supernova remnant in HESS J1731-347. For this specific case, we demonstrate that after the thermal relaxation is over, the hydrostatic structure of the neutron star can be well described with the aid of solution of Einstein field equations, applied to a sphere of fluid in hydrostatic equilibrium, derived by Tolman. The internal temperature of the neutron star is calculated assuming that the cooling occurs dominantly due to production of neutrino pairs and axions in the nn-bremsstrahlung. To impose a constraint to the axion decay constant the fact is used that the currently observed neutron star surface temperature does not deviate from the neutrino cooling scenario. For the KSVZ-axion model we find that fa>1.9×108 GeV, while for the DFSZ-axion model we obtain fa>4.7×109 GeV.
doi_str_mv 10.1088/1475-7516/2019/11/031
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2357582747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357582747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-836bcb97cd2492c0bf653e07a02cdb7f22f55dccd1008960abfe05098591692b3</originalsourceid><addsrcrecordid>eNpNkFFLwzAQgIMoOKc_QQj4XHuXNE3yKGM6ZeDD9DmkaQMdrplJC_rvTZmIT3d8fNzBR8gtwj2CUiVWUhRSYF0yQF0ilsDxjCz--Pm__ZJcpbQHYDXnakH0KgxpjLYfxkTDQO1XnwH1MRzo0E1jzCyNNtJ-oJv1bkdfUHIseCWvyYW3H6m7-Z1L8v64flttiu3r0_PqYVu4LI2F4nXjGi1dyyrNHDS-FrwDaYG5tpGeMS9E61yLAErXYBvfgQCthMZas4Yvyd3p7jGGz6lLo9mHKQ75pWFcSKGYrGS2xMlyMaQUO2-OsT_Y-G0QzFzJzAXMXMDMlQyiyZX4D9pmV2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357582747</pqid></control><display><type>article</type><title>Constraints on axions from neutron star in HESS J1731-347</title><source>Institute of Physics</source><creator>Leinson, Lev B.</creator><creatorcontrib>Leinson, Lev B.</creatorcontrib><description>To constrain the allowed range for the axion decay constant fa or, equivalently, for the axion mass ma, we consider the cooling of a neutron star with strong proton superfluidity and normal (non-superfluid) neutrons inside its core and without strong magnetic field, by analogy with the observed supernova remnant in HESS J1731-347. For this specific case, we demonstrate that after the thermal relaxation is over, the hydrostatic structure of the neutron star can be well described with the aid of solution of Einstein field equations, applied to a sphere of fluid in hydrostatic equilibrium, derived by Tolman. The internal temperature of the neutron star is calculated assuming that the cooling occurs dominantly due to production of neutrino pairs and axions in the nn-bremsstrahlung. To impose a constraint to the axion decay constant the fact is used that the currently observed neutron star surface temperature does not deviate from the neutrino cooling scenario. For the KSVZ-axion model we find that fa&gt;1.9×108 GeV, while for the DFSZ-axion model we obtain fa&gt;4.7×109 GeV.</description><identifier>ISSN: 1475-7516</identifier><identifier>EISSN: 1475-7516</identifier><identifier>DOI: 10.1088/1475-7516/2019/11/031</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Bremsstrahlung ; Cooling ; Decay ; Decay rate ; Einstein equations ; Fluids ; Magnetic fields ; Neutrinos ; Neutron stars ; Neutrons ; Superfluidity ; Supernova remnants ; Temperature ; Thermal relaxation</subject><ispartof>Journal of cosmology and astroparticle physics, 2019-11, Vol.2019 (11), p.31-31</ispartof><rights>Copyright IOP Publishing Nov 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-836bcb97cd2492c0bf653e07a02cdb7f22f55dccd1008960abfe05098591692b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Leinson, Lev B.</creatorcontrib><title>Constraints on axions from neutron star in HESS J1731-347</title><title>Journal of cosmology and astroparticle physics</title><description>To constrain the allowed range for the axion decay constant fa or, equivalently, for the axion mass ma, we consider the cooling of a neutron star with strong proton superfluidity and normal (non-superfluid) neutrons inside its core and without strong magnetic field, by analogy with the observed supernova remnant in HESS J1731-347. For this specific case, we demonstrate that after the thermal relaxation is over, the hydrostatic structure of the neutron star can be well described with the aid of solution of Einstein field equations, applied to a sphere of fluid in hydrostatic equilibrium, derived by Tolman. The internal temperature of the neutron star is calculated assuming that the cooling occurs dominantly due to production of neutrino pairs and axions in the nn-bremsstrahlung. To impose a constraint to the axion decay constant the fact is used that the currently observed neutron star surface temperature does not deviate from the neutrino cooling scenario. For the KSVZ-axion model we find that fa&gt;1.9×108 GeV, while for the DFSZ-axion model we obtain fa&gt;4.7×109 GeV.</description><subject>Bremsstrahlung</subject><subject>Cooling</subject><subject>Decay</subject><subject>Decay rate</subject><subject>Einstein equations</subject><subject>Fluids</subject><subject>Magnetic fields</subject><subject>Neutrinos</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Superfluidity</subject><subject>Supernova remnants</subject><subject>Temperature</subject><subject>Thermal relaxation</subject><issn>1475-7516</issn><issn>1475-7516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAQgIMoOKc_QQj4XHuXNE3yKGM6ZeDD9DmkaQMdrplJC_rvTZmIT3d8fNzBR8gtwj2CUiVWUhRSYF0yQF0ilsDxjCz--Pm__ZJcpbQHYDXnakH0KgxpjLYfxkTDQO1XnwH1MRzo0E1jzCyNNtJ-oJv1bkdfUHIseCWvyYW3H6m7-Z1L8v64flttiu3r0_PqYVu4LI2F4nXjGi1dyyrNHDS-FrwDaYG5tpGeMS9E61yLAErXYBvfgQCthMZas4Yvyd3p7jGGz6lLo9mHKQ75pWFcSKGYrGS2xMlyMaQUO2-OsT_Y-G0QzFzJzAXMXMDMlQyiyZX4D9pmV2U</recordid><startdate>20191125</startdate><enddate>20191125</enddate><creator>Leinson, Lev B.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191125</creationdate><title>Constraints on axions from neutron star in HESS J1731-347</title><author>Leinson, Lev B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-836bcb97cd2492c0bf653e07a02cdb7f22f55dccd1008960abfe05098591692b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bremsstrahlung</topic><topic>Cooling</topic><topic>Decay</topic><topic>Decay rate</topic><topic>Einstein equations</topic><topic>Fluids</topic><topic>Magnetic fields</topic><topic>Neutrinos</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Superfluidity</topic><topic>Supernova remnants</topic><topic>Temperature</topic><topic>Thermal relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leinson, Lev B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of cosmology and astroparticle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leinson, Lev B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraints on axions from neutron star in HESS J1731-347</atitle><jtitle>Journal of cosmology and astroparticle physics</jtitle><date>2019-11-25</date><risdate>2019</risdate><volume>2019</volume><issue>11</issue><spage>31</spage><epage>31</epage><pages>31-31</pages><issn>1475-7516</issn><eissn>1475-7516</eissn><abstract>To constrain the allowed range for the axion decay constant fa or, equivalently, for the axion mass ma, we consider the cooling of a neutron star with strong proton superfluidity and normal (non-superfluid) neutrons inside its core and without strong magnetic field, by analogy with the observed supernova remnant in HESS J1731-347. For this specific case, we demonstrate that after the thermal relaxation is over, the hydrostatic structure of the neutron star can be well described with the aid of solution of Einstein field equations, applied to a sphere of fluid in hydrostatic equilibrium, derived by Tolman. The internal temperature of the neutron star is calculated assuming that the cooling occurs dominantly due to production of neutrino pairs and axions in the nn-bremsstrahlung. To impose a constraint to the axion decay constant the fact is used that the currently observed neutron star surface temperature does not deviate from the neutrino cooling scenario. For the KSVZ-axion model we find that fa&gt;1.9×108 GeV, while for the DFSZ-axion model we obtain fa&gt;4.7×109 GeV.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1475-7516/2019/11/031</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1475-7516
ispartof Journal of cosmology and astroparticle physics, 2019-11, Vol.2019 (11), p.31-31
issn 1475-7516
1475-7516
language eng
recordid cdi_proquest_journals_2357582747
source Institute of Physics
subjects Bremsstrahlung
Cooling
Decay
Decay rate
Einstein equations
Fluids
Magnetic fields
Neutrinos
Neutron stars
Neutrons
Superfluidity
Supernova remnants
Temperature
Thermal relaxation
title Constraints on axions from neutron star in HESS J1731-347
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraints%20on%20axions%20from%20neutron%20star%20in%20HESS%20J1731-347&rft.jtitle=Journal%20of%20cosmology%20and%20astroparticle%20physics&rft.au=Leinson,%20Lev%20B.&rft.date=2019-11-25&rft.volume=2019&rft.issue=11&rft.spage=31&rft.epage=31&rft.pages=31-31&rft.issn=1475-7516&rft.eissn=1475-7516&rft_id=info:doi/10.1088/1475-7516/2019/11/031&rft_dat=%3Cproquest_cross%3E2357582747%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-836bcb97cd2492c0bf653e07a02cdb7f22f55dccd1008960abfe05098591692b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2357582747&rft_id=info:pmid/&rfr_iscdi=true