Loading…
Teleparallel equivalent of Lovelock gravity, generalizations and cosmological applications
We consider the teleparallel equivalent of Lovelock gravity and its natural extension, where the action is given by an arbitrary function f(TL1,TL2,ċċċ,TLn) of the torsion invariants TLi, which contain higher order torsion terms, and derive its field equations. Then, we consider the special case of...
Saved in:
Published in: | Journal of cosmology and astroparticle physics 2019-07, Vol.2019 (7), p.40-40 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c281t-e2bf1938e15b0a40aa441e46e469b3b35b3e52d5cf1f5c7725b26bffe09f7bd63 |
---|---|
cites | cdi_FETCH-LOGICAL-c281t-e2bf1938e15b0a40aa441e46e469b3b35b3e52d5cf1f5c7725b26bffe09f7bd63 |
container_end_page | 40 |
container_issue | 7 |
container_start_page | 40 |
container_title | Journal of cosmology and astroparticle physics |
container_volume | 2019 |
creator | González, P.A. Reyes, Samuel Vásquez, Yerko |
description | We consider the teleparallel equivalent of Lovelock gravity and its natural extension, where the action is given by an arbitrary function f(TL1,TL2,ċċċ,TLn) of the torsion invariants TLi, which contain higher order torsion terms, and derive its field equations. Then, we consider the special case of f(TL1,TL2) gravity and study a cosmological scenario by selecting a particular f(TL1,TL2), and derive the Friedmann equations. Also, we perform a dynamical systems analysis to extract information on the evolution of the cosmological model. Mainly, we find that the model has a very rich phenomenology and can describe the acceleration of the universe at late times. |
doi_str_mv | 10.1088/1475-7516/2019/07/040 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2357586077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357586077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-e2bf1938e15b0a40aa441e46e469b3b35b3e52d5cf1f5c7725b26bffe09f7bd63</originalsourceid><addsrcrecordid>eNpNkN9LwzAQx4MoOKd_ghDw1dr8aJr2UYZOYeDLfPElJNlldGZNl3SD-dfbOhHh4L7cfbiDD0K3lDxQUlU5LaTIpKBlzgitcyJzUpAzNPmbn__Ll-gqpQ0hrOS8mqCPJXjodNTeg8ew2zcH7aHtcXB4EQ7gg_3E66gPTX-8x2toYUCbL903oU1YtytsQ9oGH9aN1R7rrvND-NleowunfYKb3z5F789Py9lLtnibv84eF5llFe0zYMbRmldAhSG6IFoXBYWiHKo23HBhOAi2EtZRJ6yUTBhWGueA1E6aVcmn6O50t4tht4fUq03Yx3Z4qRgXUlQlkXKgxImyMaQUwakuNlsdj4oSNWpUoyI1KlKjRkWkGjTyb4RoZ5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357586077</pqid></control><display><type>article</type><title>Teleparallel equivalent of Lovelock gravity, generalizations and cosmological applications</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>González, P.A. ; Reyes, Samuel ; Vásquez, Yerko</creator><creatorcontrib>González, P.A. ; Reyes, Samuel ; Vásquez, Yerko</creatorcontrib><description>We consider the teleparallel equivalent of Lovelock gravity and its natural extension, where the action is given by an arbitrary function f(TL1,TL2,ċċċ,TLn) of the torsion invariants TLi, which contain higher order torsion terms, and derive its field equations. Then, we consider the special case of f(TL1,TL2) gravity and study a cosmological scenario by selecting a particular f(TL1,TL2), and derive the Friedmann equations. Also, we perform a dynamical systems analysis to extract information on the evolution of the cosmological model. Mainly, we find that the model has a very rich phenomenology and can describe the acceleration of the universe at late times.</description><identifier>ISSN: 1475-7516</identifier><identifier>EISSN: 1475-7516</identifier><identifier>DOI: 10.1088/1475-7516/2019/07/040</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Acceleration ; Astronomical models ; Cosmology ; Equivalence ; Gravitation ; Phenomenology ; Systems analysis</subject><ispartof>Journal of cosmology and astroparticle physics, 2019-07, Vol.2019 (7), p.40-40</ispartof><rights>Copyright IOP Publishing Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-e2bf1938e15b0a40aa441e46e469b3b35b3e52d5cf1f5c7725b26bffe09f7bd63</citedby><cites>FETCH-LOGICAL-c281t-e2bf1938e15b0a40aa441e46e469b3b35b3e52d5cf1f5c7725b26bffe09f7bd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>González, P.A.</creatorcontrib><creatorcontrib>Reyes, Samuel</creatorcontrib><creatorcontrib>Vásquez, Yerko</creatorcontrib><title>Teleparallel equivalent of Lovelock gravity, generalizations and cosmological applications</title><title>Journal of cosmology and astroparticle physics</title><description>We consider the teleparallel equivalent of Lovelock gravity and its natural extension, where the action is given by an arbitrary function f(TL1,TL2,ċċċ,TLn) of the torsion invariants TLi, which contain higher order torsion terms, and derive its field equations. Then, we consider the special case of f(TL1,TL2) gravity and study a cosmological scenario by selecting a particular f(TL1,TL2), and derive the Friedmann equations. Also, we perform a dynamical systems analysis to extract information on the evolution of the cosmological model. Mainly, we find that the model has a very rich phenomenology and can describe the acceleration of the universe at late times.</description><subject>Acceleration</subject><subject>Astronomical models</subject><subject>Cosmology</subject><subject>Equivalence</subject><subject>Gravitation</subject><subject>Phenomenology</subject><subject>Systems analysis</subject><issn>1475-7516</issn><issn>1475-7516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkN9LwzAQx4MoOKd_ghDw1dr8aJr2UYZOYeDLfPElJNlldGZNl3SD-dfbOhHh4L7cfbiDD0K3lDxQUlU5LaTIpKBlzgitcyJzUpAzNPmbn__Ll-gqpQ0hrOS8mqCPJXjodNTeg8ew2zcH7aHtcXB4EQ7gg_3E66gPTX-8x2toYUCbL903oU1YtytsQ9oGH9aN1R7rrvND-NleowunfYKb3z5F789Py9lLtnibv84eF5llFe0zYMbRmldAhSG6IFoXBYWiHKo23HBhOAi2EtZRJ6yUTBhWGueA1E6aVcmn6O50t4tht4fUq03Yx3Z4qRgXUlQlkXKgxImyMaQUwakuNlsdj4oSNWpUoyI1KlKjRkWkGjTyb4RoZ5E</recordid><startdate>20190725</startdate><enddate>20190725</enddate><creator>González, P.A.</creator><creator>Reyes, Samuel</creator><creator>Vásquez, Yerko</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190725</creationdate><title>Teleparallel equivalent of Lovelock gravity, generalizations and cosmological applications</title><author>González, P.A. ; Reyes, Samuel ; Vásquez, Yerko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-e2bf1938e15b0a40aa441e46e469b3b35b3e52d5cf1f5c7725b26bffe09f7bd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Astronomical models</topic><topic>Cosmology</topic><topic>Equivalence</topic><topic>Gravitation</topic><topic>Phenomenology</topic><topic>Systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González, P.A.</creatorcontrib><creatorcontrib>Reyes, Samuel</creatorcontrib><creatorcontrib>Vásquez, Yerko</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of cosmology and astroparticle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González, P.A.</au><au>Reyes, Samuel</au><au>Vásquez, Yerko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Teleparallel equivalent of Lovelock gravity, generalizations and cosmological applications</atitle><jtitle>Journal of cosmology and astroparticle physics</jtitle><date>2019-07-25</date><risdate>2019</risdate><volume>2019</volume><issue>7</issue><spage>40</spage><epage>40</epage><pages>40-40</pages><issn>1475-7516</issn><eissn>1475-7516</eissn><abstract>We consider the teleparallel equivalent of Lovelock gravity and its natural extension, where the action is given by an arbitrary function f(TL1,TL2,ċċċ,TLn) of the torsion invariants TLi, which contain higher order torsion terms, and derive its field equations. Then, we consider the special case of f(TL1,TL2) gravity and study a cosmological scenario by selecting a particular f(TL1,TL2), and derive the Friedmann equations. Also, we perform a dynamical systems analysis to extract information on the evolution of the cosmological model. Mainly, we find that the model has a very rich phenomenology and can describe the acceleration of the universe at late times.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1475-7516/2019/07/040</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-7516 |
ispartof | Journal of cosmology and astroparticle physics, 2019-07, Vol.2019 (7), p.40-40 |
issn | 1475-7516 1475-7516 |
language | eng |
recordid | cdi_proquest_journals_2357586077 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Acceleration Astronomical models Cosmology Equivalence Gravitation Phenomenology Systems analysis |
title | Teleparallel equivalent of Lovelock gravity, generalizations and cosmological applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Teleparallel%20equivalent%20of%20Lovelock%20gravity,%20generalizations%20and%20cosmological%20applications&rft.jtitle=Journal%20of%20cosmology%20and%20astroparticle%20physics&rft.au=Gonz%C3%A1lez,%20P.A.&rft.date=2019-07-25&rft.volume=2019&rft.issue=7&rft.spage=40&rft.epage=40&rft.pages=40-40&rft.issn=1475-7516&rft.eissn=1475-7516&rft_id=info:doi/10.1088/1475-7516/2019/07/040&rft_dat=%3Cproquest_cross%3E2357586077%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-e2bf1938e15b0a40aa441e46e469b3b35b3e52d5cf1f5c7725b26bffe09f7bd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2357586077&rft_id=info:pmid/&rfr_iscdi=true |