Loading…

A stable flat universe with variable cosmological constant in f(R, T) gravity

In this paper, a general FRW cosmological model has been constructed in f(R,T) gravity reconstruction with variable cosmological constant. A number of solutions to the field equations has been generated by utilizing a form for the Hubble parameter that leads to Berman's law of constant decelera...

Full description

Saved in:
Bibliographic Details
Published in:Research in astronomy and astrophysics 2018-10, Vol.18 (10), p.123
Main Authors: Ahmed, Nasr, Alamri, Sultan Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a general FRW cosmological model has been constructed in f(R,T) gravity reconstruction with variable cosmological constant. A number of solutions to the field equations has been generated by utilizing a form for the Hubble parameter that leads to Berman's law of constant deceleration parameter q = m − 1. The possible decelerating and accelerating solutions have been investigated. For (q > 0) we get a stable flat decelerating radiation-dominated universe at q = 1. For (q < 0) we get a stable accelerating solution describing a flat universe with positive energy density and negative cosmological constant. Nonconventional mechanisms that are expected to address the late-time acceleration with negative cosmological constant have been discussed.
ISSN:1674-4527
DOI:10.1088/1674-4527/18/10/123