Loading…

Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities

We consider a series of initial- boundary value problems for the equation of ion- sound waves in a plasma. For each of them we prove the local (in time) solubility and perform an analytical- numerical study of the blow-up of solutions. We use the method of test functions to obtain sufficient conditi...

Full description

Saved in:
Bibliographic Details
Published in:Izvestiya. Mathematics 2018-04, Vol.82 (2), p.283-317
Main Authors: Korpusov, M. O., Lukyanenko, D. V., Panin, A. A., Yushkov, E. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c307t-392b9f773c74076a934dbbb6e82d8aff4a6449cb10476457cf2ce0e74f733fe93
cites cdi_FETCH-LOGICAL-c307t-392b9f773c74076a934dbbb6e82d8aff4a6449cb10476457cf2ce0e74f733fe93
container_end_page 317
container_issue 2
container_start_page 283
container_title Izvestiya. Mathematics
container_volume 82
creator Korpusov, M. O.
Lukyanenko, D. V.
Panin, A. A.
Yushkov, E. V.
description We consider a series of initial- boundary value problems for the equation of ion- sound waves in a plasma. For each of them we prove the local (in time) solubility and perform an analytical- numerical study of the blow-up of solutions. We use the method of test functions to obtain sufficient conditions for finite-time blow-up and an upper bound for the blow-up time. In concrete numerical examples we improve these bounds numerically using the mesh refinement method. Thus the analytical and numerical parts of the investigation complement each other. The time interval for the numerical modelling is chosen in accordance with the analytically obtained upper bound for the blow-up time. In return, numerical calculations specify the moment and pattern of this blow-up.
doi_str_mv 10.1070/IM8579
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2357612564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357612564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-392b9f773c74076a934dbbb6e82d8aff4a6449cb10476457cf2ce0e74f733fe93</originalsourceid><addsrcrecordid>eNptkE9LxDAQxYMouK76GYKKt2jSpEl71MU_C4oX9eAlpNkEs3SbbtLu4rc3tYIiMoeZYX7vDTwAjgm-IFjgy_ljkYtyB0wI4wViBcG7acacoZzTbB8cxLjEGDNG6ATE69pvUd9Cb2H0dd8538RhUdD2dQ0b36DaNUYFaNa9Gs7DNTUUfd8s4FZtTISuSYK2VnGl4NZ171867U3QbmN-mbjOmXgI9qyqozn67lPwcnvzPLtHD09389nVA9IUiw7RMqtKKwTVgmHBVUnZoqoqbopsUShrmeKMlboimAnOcqFtpg02gllBqTUlnYLT0bcNft2b2Mml70OTXsqM5oKTLOcsUecjpYOPMRgr2-BWKnxIguUQqBwDTeDZCDrf_jjN315lkclUBZXtwibs5B_sj9cnDRh_kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357612564</pqid></control><display><type>article</type><title>Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities</title><source>Institute of Physics</source><creator>Korpusov, M. O. ; Lukyanenko, D. V. ; Panin, A. A. ; Yushkov, E. V.</creator><creatorcontrib>Korpusov, M. O. ; Lukyanenko, D. V. ; Panin, A. A. ; Yushkov, E. V.</creatorcontrib><description>We consider a series of initial- boundary value problems for the equation of ion- sound waves in a plasma. For each of them we prove the local (in time) solubility and perform an analytical- numerical study of the blow-up of solutions. We use the method of test functions to obtain sufficient conditions for finite-time blow-up and an upper bound for the blow-up time. In concrete numerical examples we improve these bounds numerically using the mesh refinement method. Thus the analytical and numerical parts of the investigation complement each other. The time interval for the numerical modelling is chosen in accordance with the analytically obtained upper bound for the blow-up time. In return, numerical calculations specify the moment and pattern of this blow-up.</description><identifier>ISSN: 1064-5632</identifier><identifier>EISSN: 1468-4810</identifier><identifier>DOI: 10.1070/IM8579</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>blow-up of a solution ; Boundary value problems ; exponential non- linearity ; Finite element method ; Grid refinement (mathematics) ; Linear equations ; non- linear initial- boundary value problem ; Nonlinear equations ; Richardson extrapolation ; Sobolev-type equations ; Sound waves ; Test procedures ; Upper bounds</subject><ispartof>Izvestiya. Mathematics, 2018-04, Vol.82 (2), p.283-317</ispartof><rights>2018 RAS(DoM) and LMS</rights><rights>Copyright IOP Publishing Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-392b9f773c74076a934dbbb6e82d8aff4a6449cb10476457cf2ce0e74f733fe93</citedby><cites>FETCH-LOGICAL-c307t-392b9f773c74076a934dbbb6e82d8aff4a6449cb10476457cf2ce0e74f733fe93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Korpusov, M. O.</creatorcontrib><creatorcontrib>Lukyanenko, D. V.</creatorcontrib><creatorcontrib>Panin, A. A.</creatorcontrib><creatorcontrib>Yushkov, E. V.</creatorcontrib><title>Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities</title><title>Izvestiya. Mathematics</title><addtitle>IZV</addtitle><addtitle>Izv. Math</addtitle><description>We consider a series of initial- boundary value problems for the equation of ion- sound waves in a plasma. For each of them we prove the local (in time) solubility and perform an analytical- numerical study of the blow-up of solutions. We use the method of test functions to obtain sufficient conditions for finite-time blow-up and an upper bound for the blow-up time. In concrete numerical examples we improve these bounds numerically using the mesh refinement method. Thus the analytical and numerical parts of the investigation complement each other. The time interval for the numerical modelling is chosen in accordance with the analytically obtained upper bound for the blow-up time. In return, numerical calculations specify the moment and pattern of this blow-up.</description><subject>blow-up of a solution</subject><subject>Boundary value problems</subject><subject>exponential non- linearity</subject><subject>Finite element method</subject><subject>Grid refinement (mathematics)</subject><subject>Linear equations</subject><subject>non- linear initial- boundary value problem</subject><subject>Nonlinear equations</subject><subject>Richardson extrapolation</subject><subject>Sobolev-type equations</subject><subject>Sound waves</subject><subject>Test procedures</subject><subject>Upper bounds</subject><issn>1064-5632</issn><issn>1468-4810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkE9LxDAQxYMouK76GYKKt2jSpEl71MU_C4oX9eAlpNkEs3SbbtLu4rc3tYIiMoeZYX7vDTwAjgm-IFjgy_ljkYtyB0wI4wViBcG7acacoZzTbB8cxLjEGDNG6ATE69pvUd9Cb2H0dd8538RhUdD2dQ0b36DaNUYFaNa9Gs7DNTUUfd8s4FZtTISuSYK2VnGl4NZ171867U3QbmN-mbjOmXgI9qyqozn67lPwcnvzPLtHD09389nVA9IUiw7RMqtKKwTVgmHBVUnZoqoqbopsUShrmeKMlboimAnOcqFtpg02gllBqTUlnYLT0bcNft2b2Mml70OTXsqM5oKTLOcsUecjpYOPMRgr2-BWKnxIguUQqBwDTeDZCDrf_jjN315lkclUBZXtwibs5B_sj9cnDRh_kA</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Korpusov, M. O.</creator><creator>Lukyanenko, D. V.</creator><creator>Panin, A. A.</creator><creator>Yushkov, E. V.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180401</creationdate><title>Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities</title><author>Korpusov, M. O. ; Lukyanenko, D. V. ; Panin, A. A. ; Yushkov, E. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-392b9f773c74076a934dbbb6e82d8aff4a6449cb10476457cf2ce0e74f733fe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>blow-up of a solution</topic><topic>Boundary value problems</topic><topic>exponential non- linearity</topic><topic>Finite element method</topic><topic>Grid refinement (mathematics)</topic><topic>Linear equations</topic><topic>non- linear initial- boundary value problem</topic><topic>Nonlinear equations</topic><topic>Richardson extrapolation</topic><topic>Sobolev-type equations</topic><topic>Sound waves</topic><topic>Test procedures</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korpusov, M. O.</creatorcontrib><creatorcontrib>Lukyanenko, D. V.</creatorcontrib><creatorcontrib>Panin, A. A.</creatorcontrib><creatorcontrib>Yushkov, E. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Izvestiya. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korpusov, M. O.</au><au>Lukyanenko, D. V.</au><au>Panin, A. A.</au><au>Yushkov, E. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities</atitle><jtitle>Izvestiya. Mathematics</jtitle><stitle>IZV</stitle><addtitle>Izv. Math</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>82</volume><issue>2</issue><spage>283</spage><epage>317</epage><pages>283-317</pages><issn>1064-5632</issn><eissn>1468-4810</eissn><abstract>We consider a series of initial- boundary value problems for the equation of ion- sound waves in a plasma. For each of them we prove the local (in time) solubility and perform an analytical- numerical study of the blow-up of solutions. We use the method of test functions to obtain sufficient conditions for finite-time blow-up and an upper bound for the blow-up time. In concrete numerical examples we improve these bounds numerically using the mesh refinement method. Thus the analytical and numerical parts of the investigation complement each other. The time interval for the numerical modelling is chosen in accordance with the analytically obtained upper bound for the blow-up time. In return, numerical calculations specify the moment and pattern of this blow-up.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/IM8579</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5632
ispartof Izvestiya. Mathematics, 2018-04, Vol.82 (2), p.283-317
issn 1064-5632
1468-4810
language eng
recordid cdi_proquest_journals_2357612564
source Institute of Physics
subjects blow-up of a solution
Boundary value problems
exponential non- linearity
Finite element method
Grid refinement (mathematics)
Linear equations
non- linear initial- boundary value problem
Nonlinear equations
Richardson extrapolation
Sobolev-type equations
Sound waves
Test procedures
Upper bounds
title Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blow-up%20of%20solutions%20of%20a%20full%20non-linear%20equation%20of%20ion-sound%20waves%20in%20a%20plasma%20with%20non-coercive%20non-linearities&rft.jtitle=Izvestiya.%20Mathematics&rft.au=Korpusov,%20M.%20O.&rft.date=2018-04-01&rft.volume=82&rft.issue=2&rft.spage=283&rft.epage=317&rft.pages=283-317&rft.issn=1064-5632&rft.eissn=1468-4810&rft_id=info:doi/10.1070/IM8579&rft_dat=%3Cproquest_cross%3E2357612564%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-392b9f773c74076a934dbbb6e82d8aff4a6449cb10476457cf2ce0e74f733fe93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2357612564&rft_id=info:pmid/&rfr_iscdi=true