Loading…
Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities
We consider a series of initial- boundary value problems for the equation of ion- sound waves in a plasma. For each of them we prove the local (in time) solubility and perform an analytical- numerical study of the blow-up of solutions. We use the method of test functions to obtain sufficient conditi...
Saved in:
Published in: | Izvestiya. Mathematics 2018-04, Vol.82 (2), p.283-317 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c307t-392b9f773c74076a934dbbb6e82d8aff4a6449cb10476457cf2ce0e74f733fe93 |
---|---|
cites | cdi_FETCH-LOGICAL-c307t-392b9f773c74076a934dbbb6e82d8aff4a6449cb10476457cf2ce0e74f733fe93 |
container_end_page | 317 |
container_issue | 2 |
container_start_page | 283 |
container_title | Izvestiya. Mathematics |
container_volume | 82 |
creator | Korpusov, M. O. Lukyanenko, D. V. Panin, A. A. Yushkov, E. V. |
description | We consider a series of initial- boundary value problems for the equation of ion- sound waves in a plasma. For each of them we prove the local (in time) solubility and perform an analytical- numerical study of the blow-up of solutions. We use the method of test functions to obtain sufficient conditions for finite-time blow-up and an upper bound for the blow-up time. In concrete numerical examples we improve these bounds numerically using the mesh refinement method. Thus the analytical and numerical parts of the investigation complement each other. The time interval for the numerical modelling is chosen in accordance with the analytically obtained upper bound for the blow-up time. In return, numerical calculations specify the moment and pattern of this blow-up. |
doi_str_mv | 10.1070/IM8579 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2357612564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357612564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-392b9f773c74076a934dbbb6e82d8aff4a6449cb10476457cf2ce0e74f733fe93</originalsourceid><addsrcrecordid>eNptkE9LxDAQxYMouK76GYKKt2jSpEl71MU_C4oX9eAlpNkEs3SbbtLu4rc3tYIiMoeZYX7vDTwAjgm-IFjgy_ljkYtyB0wI4wViBcG7acacoZzTbB8cxLjEGDNG6ATE69pvUd9Cb2H0dd8538RhUdD2dQ0b36DaNUYFaNa9Gs7DNTUUfd8s4FZtTISuSYK2VnGl4NZ171867U3QbmN-mbjOmXgI9qyqozn67lPwcnvzPLtHD09389nVA9IUiw7RMqtKKwTVgmHBVUnZoqoqbopsUShrmeKMlboimAnOcqFtpg02gllBqTUlnYLT0bcNft2b2Mml70OTXsqM5oKTLOcsUecjpYOPMRgr2-BWKnxIguUQqBwDTeDZCDrf_jjN315lkclUBZXtwibs5B_sj9cnDRh_kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357612564</pqid></control><display><type>article</type><title>Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities</title><source>Institute of Physics</source><creator>Korpusov, M. O. ; Lukyanenko, D. V. ; Panin, A. A. ; Yushkov, E. V.</creator><creatorcontrib>Korpusov, M. O. ; Lukyanenko, D. V. ; Panin, A. A. ; Yushkov, E. V.</creatorcontrib><description>We consider a series of initial- boundary value problems for the equation of ion- sound waves in a plasma. For each of them we prove the local (in time) solubility and perform an analytical- numerical study of the blow-up of solutions. We use the method of test functions to obtain sufficient conditions for finite-time blow-up and an upper bound for the blow-up time. In concrete numerical examples we improve these bounds numerically using the mesh refinement method. Thus the analytical and numerical parts of the investigation complement each other. The time interval for the numerical modelling is chosen in accordance with the analytically obtained upper bound for the blow-up time. In return, numerical calculations specify the moment and pattern of this blow-up.</description><identifier>ISSN: 1064-5632</identifier><identifier>EISSN: 1468-4810</identifier><identifier>DOI: 10.1070/IM8579</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>blow-up of a solution ; Boundary value problems ; exponential non- linearity ; Finite element method ; Grid refinement (mathematics) ; Linear equations ; non- linear initial- boundary value problem ; Nonlinear equations ; Richardson extrapolation ; Sobolev-type equations ; Sound waves ; Test procedures ; Upper bounds</subject><ispartof>Izvestiya. Mathematics, 2018-04, Vol.82 (2), p.283-317</ispartof><rights>2018 RAS(DoM) and LMS</rights><rights>Copyright IOP Publishing Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-392b9f773c74076a934dbbb6e82d8aff4a6449cb10476457cf2ce0e74f733fe93</citedby><cites>FETCH-LOGICAL-c307t-392b9f773c74076a934dbbb6e82d8aff4a6449cb10476457cf2ce0e74f733fe93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Korpusov, M. O.</creatorcontrib><creatorcontrib>Lukyanenko, D. V.</creatorcontrib><creatorcontrib>Panin, A. A.</creatorcontrib><creatorcontrib>Yushkov, E. V.</creatorcontrib><title>Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities</title><title>Izvestiya. Mathematics</title><addtitle>IZV</addtitle><addtitle>Izv. Math</addtitle><description>We consider a series of initial- boundary value problems for the equation of ion- sound waves in a plasma. For each of them we prove the local (in time) solubility and perform an analytical- numerical study of the blow-up of solutions. We use the method of test functions to obtain sufficient conditions for finite-time blow-up and an upper bound for the blow-up time. In concrete numerical examples we improve these bounds numerically using the mesh refinement method. Thus the analytical and numerical parts of the investigation complement each other. The time interval for the numerical modelling is chosen in accordance with the analytically obtained upper bound for the blow-up time. In return, numerical calculations specify the moment and pattern of this blow-up.</description><subject>blow-up of a solution</subject><subject>Boundary value problems</subject><subject>exponential non- linearity</subject><subject>Finite element method</subject><subject>Grid refinement (mathematics)</subject><subject>Linear equations</subject><subject>non- linear initial- boundary value problem</subject><subject>Nonlinear equations</subject><subject>Richardson extrapolation</subject><subject>Sobolev-type equations</subject><subject>Sound waves</subject><subject>Test procedures</subject><subject>Upper bounds</subject><issn>1064-5632</issn><issn>1468-4810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkE9LxDAQxYMouK76GYKKt2jSpEl71MU_C4oX9eAlpNkEs3SbbtLu4rc3tYIiMoeZYX7vDTwAjgm-IFjgy_ljkYtyB0wI4wViBcG7acacoZzTbB8cxLjEGDNG6ATE69pvUd9Cb2H0dd8538RhUdD2dQ0b36DaNUYFaNa9Gs7DNTUUfd8s4FZtTISuSYK2VnGl4NZ171867U3QbmN-mbjOmXgI9qyqozn67lPwcnvzPLtHD09389nVA9IUiw7RMqtKKwTVgmHBVUnZoqoqbopsUShrmeKMlboimAnOcqFtpg02gllBqTUlnYLT0bcNft2b2Mml70OTXsqM5oKTLOcsUecjpYOPMRgr2-BWKnxIguUQqBwDTeDZCDrf_jjN315lkclUBZXtwibs5B_sj9cnDRh_kA</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Korpusov, M. O.</creator><creator>Lukyanenko, D. V.</creator><creator>Panin, A. A.</creator><creator>Yushkov, E. V.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180401</creationdate><title>Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities</title><author>Korpusov, M. O. ; Lukyanenko, D. V. ; Panin, A. A. ; Yushkov, E. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-392b9f773c74076a934dbbb6e82d8aff4a6449cb10476457cf2ce0e74f733fe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>blow-up of a solution</topic><topic>Boundary value problems</topic><topic>exponential non- linearity</topic><topic>Finite element method</topic><topic>Grid refinement (mathematics)</topic><topic>Linear equations</topic><topic>non- linear initial- boundary value problem</topic><topic>Nonlinear equations</topic><topic>Richardson extrapolation</topic><topic>Sobolev-type equations</topic><topic>Sound waves</topic><topic>Test procedures</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korpusov, M. O.</creatorcontrib><creatorcontrib>Lukyanenko, D. V.</creatorcontrib><creatorcontrib>Panin, A. A.</creatorcontrib><creatorcontrib>Yushkov, E. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Izvestiya. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korpusov, M. O.</au><au>Lukyanenko, D. V.</au><au>Panin, A. A.</au><au>Yushkov, E. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities</atitle><jtitle>Izvestiya. Mathematics</jtitle><stitle>IZV</stitle><addtitle>Izv. Math</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>82</volume><issue>2</issue><spage>283</spage><epage>317</epage><pages>283-317</pages><issn>1064-5632</issn><eissn>1468-4810</eissn><abstract>We consider a series of initial- boundary value problems for the equation of ion- sound waves in a plasma. For each of them we prove the local (in time) solubility and perform an analytical- numerical study of the blow-up of solutions. We use the method of test functions to obtain sufficient conditions for finite-time blow-up and an upper bound for the blow-up time. In concrete numerical examples we improve these bounds numerically using the mesh refinement method. Thus the analytical and numerical parts of the investigation complement each other. The time interval for the numerical modelling is chosen in accordance with the analytically obtained upper bound for the blow-up time. In return, numerical calculations specify the moment and pattern of this blow-up.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/IM8579</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5632 |
ispartof | Izvestiya. Mathematics, 2018-04, Vol.82 (2), p.283-317 |
issn | 1064-5632 1468-4810 |
language | eng |
recordid | cdi_proquest_journals_2357612564 |
source | Institute of Physics |
subjects | blow-up of a solution Boundary value problems exponential non- linearity Finite element method Grid refinement (mathematics) Linear equations non- linear initial- boundary value problem Nonlinear equations Richardson extrapolation Sobolev-type equations Sound waves Test procedures Upper bounds |
title | Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blow-up%20of%20solutions%20of%20a%20full%20non-linear%20equation%20of%20ion-sound%20waves%20in%20a%20plasma%20with%20non-coercive%20non-linearities&rft.jtitle=Izvestiya.%20Mathematics&rft.au=Korpusov,%20M.%20O.&rft.date=2018-04-01&rft.volume=82&rft.issue=2&rft.spage=283&rft.epage=317&rft.pages=283-317&rft.issn=1064-5632&rft.eissn=1468-4810&rft_id=info:doi/10.1070/IM8579&rft_dat=%3Cproquest_cross%3E2357612564%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-392b9f773c74076a934dbbb6e82d8aff4a6449cb10476457cf2ce0e74f733fe93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2357612564&rft_id=info:pmid/&rfr_iscdi=true |