Loading…

A monolithic ASIC demonstrator for the Thin Time-of-Flight PET scanner

Time-of-flight measurement is an important advancement in PET scanners to improve image reconstruction with a lower delivered radiation dose. This article describes the monolithic ASIC for the TT-PET project, a novel idea for a high-precision PET scanner for small animals. The chip uses a SiGe Bi-CM...

Full description

Saved in:
Bibliographic Details
Published in:Journal of instrumentation 2019-07, Vol.14 (7), p.P07013-P07013, Article P07013
Main Authors: Valerio, P., Cardarelli, R., Iacobucci, G., Paolozzi, L., Ripiccini, E., Hayakawa, D., Bruno, S., Caltabiano, A., Kaynak, M., Rücker, H., Nessi, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Time-of-flight measurement is an important advancement in PET scanners to improve image reconstruction with a lower delivered radiation dose. This article describes the monolithic ASIC for the TT-PET project, a novel idea for a high-precision PET scanner for small animals. The chip uses a SiGe Bi-CMOS process for timing measurements, integrating a fully-depleted pixel matrix with a low-power BJT-based front-end per channel, integrated on the same 100 μm thick die. The target timing resolution of the scanner is 30 ps RMS for electrons from the conversion of 511 keV photons. The system will include 1.6 million channels across almost 2000 different chips. A full-featured demonstrator chip with a 3×10 matrix of 500×500 μm 2 pixels was fabricated to validate each block. Its design and experimental results are presented here.
ISSN:1748-0221
1748-0221
DOI:10.1088/1748-0221/14/07/P07013