Loading…

Molecular relaxations in supercooled liquid and glassy states of amorphous gambogic acid: Dielectric spectroscopy, calorimetry, and theoretical approach

The relaxation dynamics and thermodynamic properties of supercooled and glassy gambogic acid are investigated using both theory and experiment. We measure the temperature dependence of the relaxation times in three polymorphs (α-, β-, and γ-form). To gain insight into the relaxation processes, we pr...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2020-02, Vol.10 (2), p.025128-025128-7
Main Authors: Phan, Anh D., Thu Thuy, Tran Thi, Kim An, Nguyen Thi, Knapik-Kowalczuk, Justyna, Paluch, Marian, Wakabayashi, Katsunori
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The relaxation dynamics and thermodynamic properties of supercooled and glassy gambogic acid are investigated using both theory and experiment. We measure the temperature dependence of the relaxation times in three polymorphs (α-, β-, and γ-form). To gain insight into the relaxation processes, we propose a theoretical approach to quantitatively understand the nature of these three relaxations. The α-relaxation captures cooperative motions of molecules, while the β-process is mainly governed by the local dynamics of a single molecule within the cage formed by its nearest neighbors. Based on quantitative agreement between theory and experimental data, our calculations clearly indicate that the β-process is a precursor of the structural relaxation and intramolecular motions are responsible for the γ-relaxation. Moreover, the approach is exploited to study the effects of the heating process on alpha relaxation. We find that the heating rate varies logarithmically with Tg and 1000/Tg. These variations are qualitatively consistent with many prior studies.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.5139101