Loading…

Higher Geometry for Non-geometric T-Duals

We investigate topological T-duality in the framework of non-abelian gerbes and higher gauge groups. We show that this framework admits the gluing of locally defined T-duals, in situations where no globally defined (“geometric”) T-duals exist. The gluing results into new, higher-geometrical objects...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2020-02, Vol.374 (1), p.317-366
Main Authors: Nikolaus, Thomas, Waldorf, Konrad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-83a0f1d23da78a8fb8fcb2d2f5de02c3fcc102cb2b1a9f2b3b761ec9aadc27d43
cites cdi_FETCH-LOGICAL-c319t-83a0f1d23da78a8fb8fcb2d2f5de02c3fcc102cb2b1a9f2b3b761ec9aadc27d43
container_end_page 366
container_issue 1
container_start_page 317
container_title Communications in mathematical physics
container_volume 374
creator Nikolaus, Thomas
Waldorf, Konrad
description We investigate topological T-duality in the framework of non-abelian gerbes and higher gauge groups. We show that this framework admits the gluing of locally defined T-duals, in situations where no globally defined (“geometric”) T-duals exist. The gluing results into new, higher-geometrical objects that can be used to study non-geometric T-duals, alternatively to other approaches like non-commutative geometry.
doi_str_mv 10.1007/s00220-019-03496-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2358710187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2358710187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-83a0f1d23da78a8fb8fcb2d2f5de02c3fcc102cb2b1a9f2b3b761ec9aadc27d43</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wNWAKxfR99FmJkupthWKbuo6ZDJJbbGdmkwX_fdGR3Dn6sLjnvvgCHGNcIcA5X0CIAIJqCXwSCvJJ2KAIyYJGtWpGAAgSFaozsVFShsA0KTUQNzO16t3H4uZb7e-i8citLF4aXdy1R_WrljKx4P9SJfiLOTwV785FG_Tp-VkLhevs-fJw0I6Rt3Jii0EbIgbW1a2CnUVXE0NhXHjgRwH5zBnTTVaHajmulTonba2cVQ2Ix6Km353H9vPg0-d2bSHuMsvDfG4KhGwKnOL-paLbUrRB7OP662NR4NgvpWYXonJSsyPEsMZ4h5Kubxb-fg3_Q_1Bd8AYy8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358710187</pqid></control><display><type>article</type><title>Higher Geometry for Non-geometric T-Duals</title><source>Springer Link</source><creator>Nikolaus, Thomas ; Waldorf, Konrad</creator><creatorcontrib>Nikolaus, Thomas ; Waldorf, Konrad</creatorcontrib><description>We investigate topological T-duality in the framework of non-abelian gerbes and higher gauge groups. We show that this framework admits the gluing of locally defined T-duals, in situations where no globally defined (“geometric”) T-duals exist. The gluing results into new, higher-geometrical objects that can be used to study non-geometric T-duals, alternatively to other approaches like non-commutative geometry.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03496-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Gluing ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2020-02, Vol.374 (1), p.317-366</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>2019© Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-83a0f1d23da78a8fb8fcb2d2f5de02c3fcc102cb2b1a9f2b3b761ec9aadc27d43</citedby><cites>FETCH-LOGICAL-c319t-83a0f1d23da78a8fb8fcb2d2f5de02c3fcc102cb2b1a9f2b3b761ec9aadc27d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nikolaus, Thomas</creatorcontrib><creatorcontrib>Waldorf, Konrad</creatorcontrib><title>Higher Geometry for Non-geometric T-Duals</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We investigate topological T-duality in the framework of non-abelian gerbes and higher gauge groups. We show that this framework admits the gluing of locally defined T-duals, in situations where no globally defined (“geometric”) T-duals exist. The gluing results into new, higher-geometrical objects that can be used to study non-geometric T-duals, alternatively to other approaches like non-commutative geometry.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Gluing</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wNWAKxfR99FmJkupthWKbuo6ZDJJbbGdmkwX_fdGR3Dn6sLjnvvgCHGNcIcA5X0CIAIJqCXwSCvJJ2KAIyYJGtWpGAAgSFaozsVFShsA0KTUQNzO16t3H4uZb7e-i8citLF4aXdy1R_WrljKx4P9SJfiLOTwV785FG_Tp-VkLhevs-fJw0I6Rt3Jii0EbIgbW1a2CnUVXE0NhXHjgRwH5zBnTTVaHajmulTonba2cVQ2Ix6Km353H9vPg0-d2bSHuMsvDfG4KhGwKnOL-paLbUrRB7OP662NR4NgvpWYXonJSsyPEsMZ4h5Kubxb-fg3_Q_1Bd8AYy8</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Nikolaus, Thomas</creator><creator>Waldorf, Konrad</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>Higher Geometry for Non-geometric T-Duals</title><author>Nikolaus, Thomas ; Waldorf, Konrad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-83a0f1d23da78a8fb8fcb2d2f5de02c3fcc102cb2b1a9f2b3b761ec9aadc27d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Gluing</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikolaus, Thomas</creatorcontrib><creatorcontrib>Waldorf, Konrad</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikolaus, Thomas</au><au>Waldorf, Konrad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher Geometry for Non-geometric T-Duals</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>374</volume><issue>1</issue><spage>317</spage><epage>366</epage><pages>317-366</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We investigate topological T-duality in the framework of non-abelian gerbes and higher gauge groups. We show that this framework admits the gluing of locally defined T-duals, in situations where no globally defined (“geometric”) T-duals exist. The gluing results into new, higher-geometrical objects that can be used to study non-geometric T-duals, alternatively to other approaches like non-commutative geometry.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03496-3</doi><tpages>50</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2020-02, Vol.374 (1), p.317-366
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2358710187
source Springer Link
subjects Classical and Quantum Gravitation
Complex Systems
Gluing
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title Higher Geometry for Non-geometric T-Duals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20Geometry%20for%20Non-geometric%20T-Duals&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Nikolaus,%20Thomas&rft.date=2020-02-01&rft.volume=374&rft.issue=1&rft.spage=317&rft.epage=366&rft.pages=317-366&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03496-3&rft_dat=%3Cproquest_cross%3E2358710187%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-83a0f1d23da78a8fb8fcb2d2f5de02c3fcc102cb2b1a9f2b3b761ec9aadc27d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2358710187&rft_id=info:pmid/&rfr_iscdi=true