Loading…
Higher Geometry for Non-geometric T-Duals
We investigate topological T-duality in the framework of non-abelian gerbes and higher gauge groups. We show that this framework admits the gluing of locally defined T-duals, in situations where no globally defined (“geometric”) T-duals exist. The gluing results into new, higher-geometrical objects...
Saved in:
Published in: | Communications in mathematical physics 2020-02, Vol.374 (1), p.317-366 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-83a0f1d23da78a8fb8fcb2d2f5de02c3fcc102cb2b1a9f2b3b761ec9aadc27d43 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-83a0f1d23da78a8fb8fcb2d2f5de02c3fcc102cb2b1a9f2b3b761ec9aadc27d43 |
container_end_page | 366 |
container_issue | 1 |
container_start_page | 317 |
container_title | Communications in mathematical physics |
container_volume | 374 |
creator | Nikolaus, Thomas Waldorf, Konrad |
description | We investigate topological T-duality in the framework of non-abelian gerbes and higher gauge groups. We show that this framework admits the gluing of locally defined T-duals, in situations where no globally defined (“geometric”) T-duals exist. The gluing results into new, higher-geometrical objects that can be used to study non-geometric T-duals, alternatively to other approaches like non-commutative geometry. |
doi_str_mv | 10.1007/s00220-019-03496-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2358710187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2358710187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-83a0f1d23da78a8fb8fcb2d2f5de02c3fcc102cb2b1a9f2b3b761ec9aadc27d43</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wNWAKxfR99FmJkupthWKbuo6ZDJJbbGdmkwX_fdGR3Dn6sLjnvvgCHGNcIcA5X0CIAIJqCXwSCvJJ2KAIyYJGtWpGAAgSFaozsVFShsA0KTUQNzO16t3H4uZb7e-i8citLF4aXdy1R_WrljKx4P9SJfiLOTwV785FG_Tp-VkLhevs-fJw0I6Rt3Jii0EbIgbW1a2CnUVXE0NhXHjgRwH5zBnTTVaHajmulTonba2cVQ2Ix6Km353H9vPg0-d2bSHuMsvDfG4KhGwKnOL-paLbUrRB7OP662NR4NgvpWYXonJSsyPEsMZ4h5Kubxb-fg3_Q_1Bd8AYy8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358710187</pqid></control><display><type>article</type><title>Higher Geometry for Non-geometric T-Duals</title><source>Springer Link</source><creator>Nikolaus, Thomas ; Waldorf, Konrad</creator><creatorcontrib>Nikolaus, Thomas ; Waldorf, Konrad</creatorcontrib><description>We investigate topological T-duality in the framework of non-abelian gerbes and higher gauge groups. We show that this framework admits the gluing of locally defined T-duals, in situations where no globally defined (“geometric”) T-duals exist. The gluing results into new, higher-geometrical objects that can be used to study non-geometric T-duals, alternatively to other approaches like non-commutative geometry.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03496-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Gluing ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2020-02, Vol.374 (1), p.317-366</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>2019© Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-83a0f1d23da78a8fb8fcb2d2f5de02c3fcc102cb2b1a9f2b3b761ec9aadc27d43</citedby><cites>FETCH-LOGICAL-c319t-83a0f1d23da78a8fb8fcb2d2f5de02c3fcc102cb2b1a9f2b3b761ec9aadc27d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nikolaus, Thomas</creatorcontrib><creatorcontrib>Waldorf, Konrad</creatorcontrib><title>Higher Geometry for Non-geometric T-Duals</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We investigate topological T-duality in the framework of non-abelian gerbes and higher gauge groups. We show that this framework admits the gluing of locally defined T-duals, in situations where no globally defined (“geometric”) T-duals exist. The gluing results into new, higher-geometrical objects that can be used to study non-geometric T-duals, alternatively to other approaches like non-commutative geometry.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Gluing</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wNWAKxfR99FmJkupthWKbuo6ZDJJbbGdmkwX_fdGR3Dn6sLjnvvgCHGNcIcA5X0CIAIJqCXwSCvJJ2KAIyYJGtWpGAAgSFaozsVFShsA0KTUQNzO16t3H4uZb7e-i8citLF4aXdy1R_WrljKx4P9SJfiLOTwV785FG_Tp-VkLhevs-fJw0I6Rt3Jii0EbIgbW1a2CnUVXE0NhXHjgRwH5zBnTTVaHajmulTonba2cVQ2Ix6Km353H9vPg0-d2bSHuMsvDfG4KhGwKnOL-paLbUrRB7OP662NR4NgvpWYXonJSsyPEsMZ4h5Kubxb-fg3_Q_1Bd8AYy8</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Nikolaus, Thomas</creator><creator>Waldorf, Konrad</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>Higher Geometry for Non-geometric T-Duals</title><author>Nikolaus, Thomas ; Waldorf, Konrad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-83a0f1d23da78a8fb8fcb2d2f5de02c3fcc102cb2b1a9f2b3b761ec9aadc27d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Gluing</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikolaus, Thomas</creatorcontrib><creatorcontrib>Waldorf, Konrad</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikolaus, Thomas</au><au>Waldorf, Konrad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher Geometry for Non-geometric T-Duals</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>374</volume><issue>1</issue><spage>317</spage><epage>366</epage><pages>317-366</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We investigate topological T-duality in the framework of non-abelian gerbes and higher gauge groups. We show that this framework admits the gluing of locally defined T-duals, in situations where no globally defined (“geometric”) T-duals exist. The gluing results into new, higher-geometrical objects that can be used to study non-geometric T-duals, alternatively to other approaches like non-commutative geometry.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03496-3</doi><tpages>50</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2020-02, Vol.374 (1), p.317-366 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2358710187 |
source | Springer Link |
subjects | Classical and Quantum Gravitation Complex Systems Gluing Mathematical and Computational Physics Mathematical Physics Physics Physics and Astronomy Quantum Physics Relativity Theory Theoretical |
title | Higher Geometry for Non-geometric T-Duals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20Geometry%20for%20Non-geometric%20T-Duals&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Nikolaus,%20Thomas&rft.date=2020-02-01&rft.volume=374&rft.issue=1&rft.spage=317&rft.epage=366&rft.pages=317-366&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03496-3&rft_dat=%3Cproquest_cross%3E2358710187%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-83a0f1d23da78a8fb8fcb2d2f5de02c3fcc102cb2b1a9f2b3b761ec9aadc27d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2358710187&rft_id=info:pmid/&rfr_iscdi=true |