Loading…

Diffusion Limit for a Slow-Fast Standard Map

Consider the map ( x , z ) ↦ ( x + ϵ - α sin ( 2 π x ) + ϵ - ( 1 + α ) z , z + ϵ sin ( 2 π x ) ) , which is conjugate to the Chirikov standard map with a large parameter. The parameter value α = 1 is related to “scattering by resonance” phenomena. For suitable α , we obtain a central limit theorem f...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2020-02, Vol.374 (1), p.187-210
Main Authors: Blumenthal, Alex, De Simoi, Jacopo, Zhang, Ke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-a798be8f81b32184dbf529f8370b48ef6c5f1f1ed6b6f854d767638bc22e808e3
container_end_page 210
container_issue 1
container_start_page 187
container_title Communications in mathematical physics
container_volume 374
creator Blumenthal, Alex
De Simoi, Jacopo
Zhang, Ke
description Consider the map ( x , z ) ↦ ( x + ϵ - α sin ( 2 π x ) + ϵ - ( 1 + α ) z , z + ϵ sin ( 2 π x ) ) , which is conjugate to the Chirikov standard map with a large parameter. The parameter value α = 1 is related to “scattering by resonance” phenomena. For suitable α , we obtain a central limit theorem for the slow variable z for a (Lebesgue) random initial condition. The result is proved by conjugating to the Chirikov standard map and utilizing the formalism of standard pairs. Our techniques also yield for the Chirikov standard map a related limit theorem and a “finite-time” decay of correlations result.
doi_str_mv 10.1007/s00220-019-03600-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2358711367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2358711367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-a798be8f81b32184dbf529f8370b48ef6c5f1f1ed6b6f854d767638bc22e808e3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQRoMoWFf_gKeAV6MzSZukR1ldFSoeVs8hbRPpstvWpEX899u1gjdPc3nvG3iEXCLcIIC6jQCcAwPMGQgJwNQRSTAVnEGO8pgkAAhMSJSn5CzGDQDkXMqEXN833o-x6VpaNLtmoL4L1NL1tvtiKxsHuh5sW9tQ0xfbn5MTb7fRXfzeBXlfPbwtn1jx-vi8vCtYxRUMzKpcl057jaXgqNO69BnPvRYKylQ7L6vMo0dXy1J6naW1kkoKXVacOw3aiQW5mnf70H2OLg5m042hnV4aLjKtEIVUE8VnqgpdjMF504dmZ8O3QTCHKmauYqYq5qeKOUhiluIEtx8u_E3_Y-0B6u9icQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358711367</pqid></control><display><type>article</type><title>Diffusion Limit for a Slow-Fast Standard Map</title><source>Springer Nature</source><creator>Blumenthal, Alex ; De Simoi, Jacopo ; Zhang, Ke</creator><creatorcontrib>Blumenthal, Alex ; De Simoi, Jacopo ; Zhang, Ke</creatorcontrib><description>Consider the map ( x , z ) ↦ ( x + ϵ - α sin ( 2 π x ) + ϵ - ( 1 + α ) z , z + ϵ sin ( 2 π x ) ) , which is conjugate to the Chirikov standard map with a large parameter. The parameter value α = 1 is related to “scattering by resonance” phenomena. For suitable α , we obtain a central limit theorem for the slow variable z for a (Lebesgue) random initial condition. The result is proved by conjugating to the Chirikov standard map and utilizing the formalism of standard pairs. Our techniques also yield for the Chirikov standard map a related limit theorem and a “finite-time” decay of correlations result.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03600-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Diffusion rate ; Mathematical and Computational Physics ; Mathematical Physics ; Parameters ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Resonance scattering ; Theorems ; Theoretical</subject><ispartof>Communications in mathematical physics, 2020-02, Vol.374 (1), p.187-210</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>2019© Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-a798be8f81b32184dbf529f8370b48ef6c5f1f1ed6b6f854d767638bc22e808e3</cites><orcidid>0000-0002-6777-7848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Blumenthal, Alex</creatorcontrib><creatorcontrib>De Simoi, Jacopo</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><title>Diffusion Limit for a Slow-Fast Standard Map</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>Consider the map ( x , z ) ↦ ( x + ϵ - α sin ( 2 π x ) + ϵ - ( 1 + α ) z , z + ϵ sin ( 2 π x ) ) , which is conjugate to the Chirikov standard map with a large parameter. The parameter value α = 1 is related to “scattering by resonance” phenomena. For suitable α , we obtain a central limit theorem for the slow variable z for a (Lebesgue) random initial condition. The result is proved by conjugating to the Chirikov standard map and utilizing the formalism of standard pairs. Our techniques also yield for the Chirikov standard map a related limit theorem and a “finite-time” decay of correlations result.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Diffusion rate</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Resonance scattering</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQRoMoWFf_gKeAV6MzSZukR1ldFSoeVs8hbRPpstvWpEX899u1gjdPc3nvG3iEXCLcIIC6jQCcAwPMGQgJwNQRSTAVnEGO8pgkAAhMSJSn5CzGDQDkXMqEXN833o-x6VpaNLtmoL4L1NL1tvtiKxsHuh5sW9tQ0xfbn5MTb7fRXfzeBXlfPbwtn1jx-vi8vCtYxRUMzKpcl057jaXgqNO69BnPvRYKylQ7L6vMo0dXy1J6naW1kkoKXVacOw3aiQW5mnf70H2OLg5m042hnV4aLjKtEIVUE8VnqgpdjMF504dmZ8O3QTCHKmauYqYq5qeKOUhiluIEtx8u_E3_Y-0B6u9icQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Blumenthal, Alex</creator><creator>De Simoi, Jacopo</creator><creator>Zhang, Ke</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6777-7848</orcidid></search><sort><creationdate>20200201</creationdate><title>Diffusion Limit for a Slow-Fast Standard Map</title><author>Blumenthal, Alex ; De Simoi, Jacopo ; Zhang, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-a798be8f81b32184dbf529f8370b48ef6c5f1f1ed6b6f854d767638bc22e808e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Diffusion rate</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Resonance scattering</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blumenthal, Alex</creatorcontrib><creatorcontrib>De Simoi, Jacopo</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blumenthal, Alex</au><au>De Simoi, Jacopo</au><au>Zhang, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion Limit for a Slow-Fast Standard Map</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>374</volume><issue>1</issue><spage>187</spage><epage>210</epage><pages>187-210</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>Consider the map ( x , z ) ↦ ( x + ϵ - α sin ( 2 π x ) + ϵ - ( 1 + α ) z , z + ϵ sin ( 2 π x ) ) , which is conjugate to the Chirikov standard map with a large parameter. The parameter value α = 1 is related to “scattering by resonance” phenomena. For suitable α , we obtain a central limit theorem for the slow variable z for a (Lebesgue) random initial condition. The result is proved by conjugating to the Chirikov standard map and utilizing the formalism of standard pairs. Our techniques also yield for the Chirikov standard map a related limit theorem and a “finite-time” decay of correlations result.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03600-7</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-6777-7848</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2020-02, Vol.374 (1), p.187-210
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2358711367
source Springer Nature
subjects Classical and Quantum Gravitation
Complex Systems
Diffusion rate
Mathematical and Computational Physics
Mathematical Physics
Parameters
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Resonance scattering
Theorems
Theoretical
title Diffusion Limit for a Slow-Fast Standard Map
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20Limit%20for%20a%20Slow-Fast%20Standard%20Map&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Blumenthal,%20Alex&rft.date=2020-02-01&rft.volume=374&rft.issue=1&rft.spage=187&rft.epage=210&rft.pages=187-210&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03600-7&rft_dat=%3Cproquest_cross%3E2358711367%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-a798be8f81b32184dbf529f8370b48ef6c5f1f1ed6b6f854d767638bc22e808e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2358711367&rft_id=info:pmid/&rfr_iscdi=true