Loading…

CAUSE: Learning Granger Causality from Event Sequences using Attribution Methods

We study the problem of learning Granger causality between event types from asynchronous, interdependent, multi-type event sequences. Existing work suffers from either limited model flexibility or poor model explainability and thus fails to uncover Granger causality across a wide variety of event se...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-02
Main Authors: Zhang, Wei, Panum, Thomas Kobber, Jha, Somesh, Chalasani, Prasad, Page, David
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhang, Wei
Panum, Thomas Kobber
Jha, Somesh
Chalasani, Prasad
Page, David
description We study the problem of learning Granger causality between event types from asynchronous, interdependent, multi-type event sequences. Existing work suffers from either limited model flexibility or poor model explainability and thus fails to uncover Granger causality across a wide variety of event sequences with diverse event interdependency. To address these weaknesses, we propose CAUSE (Causality from AttribUtions on Sequence of Events), a novel framework for the studied task. The key idea of CAUSE is to first implicitly capture the underlying event interdependency by fitting a neural point process, and then extract from the process a Granger causality statistic using an axiomatic attribution method. Across multiple datasets riddled with diverse event interdependency, we demonstrate that CAUSE achieves superior performance on correctly inferring the inter-type Granger causality over a range of state-of-the-art methods.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2359092526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359092526</sourcerecordid><originalsourceid>FETCH-proquest_journals_23590925263</originalsourceid><addsrcrecordid>eNqNi80KgkAYAJcgSMp3-KCzYN-2lt1ErA4FgXWWrVZbsd3an6C3z6AH6DSHmRmQACmdRcs54oiE1rZxHGOyQMZoQA55diqLFewEN0qqBjaGq0YYyLm3vJPuDbXRdyheQjkoxdMLdREWvP3GmXNGnr2TWsFeuJu-2gkZ1ryzIvxxTKbr4phvo4fR_Wxd1WpvVK8qpCyNU2SY0P-qDwGgPow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359092526</pqid></control><display><type>article</type><title>CAUSE: Learning Granger Causality from Event Sequences using Attribution Methods</title><source>Publicly Available Content Database</source><creator>Zhang, Wei ; Panum, Thomas Kobber ; Jha, Somesh ; Chalasani, Prasad ; Page, David</creator><creatorcontrib>Zhang, Wei ; Panum, Thomas Kobber ; Jha, Somesh ; Chalasani, Prasad ; Page, David</creatorcontrib><description>We study the problem of learning Granger causality between event types from asynchronous, interdependent, multi-type event sequences. Existing work suffers from either limited model flexibility or poor model explainability and thus fails to uncover Granger causality across a wide variety of event sequences with diverse event interdependency. To address these weaknesses, we propose CAUSE (Causality from AttribUtions on Sequence of Events), a novel framework for the studied task. The key idea of CAUSE is to first implicitly capture the underlying event interdependency by fitting a neural point process, and then extract from the process a Granger causality statistic using an axiomatic attribution method. Across multiple datasets riddled with diverse event interdependency, we demonstrate that CAUSE achieves superior performance on correctly inferring the inter-type Granger causality over a range of state-of-the-art methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Causality ; Cointegration analysis ; Learning</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2359092526?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Panum, Thomas Kobber</creatorcontrib><creatorcontrib>Jha, Somesh</creatorcontrib><creatorcontrib>Chalasani, Prasad</creatorcontrib><creatorcontrib>Page, David</creatorcontrib><title>CAUSE: Learning Granger Causality from Event Sequences using Attribution Methods</title><title>arXiv.org</title><description>We study the problem of learning Granger causality between event types from asynchronous, interdependent, multi-type event sequences. Existing work suffers from either limited model flexibility or poor model explainability and thus fails to uncover Granger causality across a wide variety of event sequences with diverse event interdependency. To address these weaknesses, we propose CAUSE (Causality from AttribUtions on Sequence of Events), a novel framework for the studied task. The key idea of CAUSE is to first implicitly capture the underlying event interdependency by fitting a neural point process, and then extract from the process a Granger causality statistic using an axiomatic attribution method. Across multiple datasets riddled with diverse event interdependency, we demonstrate that CAUSE achieves superior performance on correctly inferring the inter-type Granger causality over a range of state-of-the-art methods.</description><subject>Causality</subject><subject>Cointegration analysis</subject><subject>Learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi80KgkAYAJcgSMp3-KCzYN-2lt1ErA4FgXWWrVZbsd3an6C3z6AH6DSHmRmQACmdRcs54oiE1rZxHGOyQMZoQA55diqLFewEN0qqBjaGq0YYyLm3vJPuDbXRdyheQjkoxdMLdREWvP3GmXNGnr2TWsFeuJu-2gkZ1ryzIvxxTKbr4phvo4fR_Wxd1WpvVK8qpCyNU2SY0P-qDwGgPow</recordid><startdate>20200218</startdate><enddate>20200218</enddate><creator>Zhang, Wei</creator><creator>Panum, Thomas Kobber</creator><creator>Jha, Somesh</creator><creator>Chalasani, Prasad</creator><creator>Page, David</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200218</creationdate><title>CAUSE: Learning Granger Causality from Event Sequences using Attribution Methods</title><author>Zhang, Wei ; Panum, Thomas Kobber ; Jha, Somesh ; Chalasani, Prasad ; Page, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23590925263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Causality</topic><topic>Cointegration analysis</topic><topic>Learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Panum, Thomas Kobber</creatorcontrib><creatorcontrib>Jha, Somesh</creatorcontrib><creatorcontrib>Chalasani, Prasad</creatorcontrib><creatorcontrib>Page, David</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wei</au><au>Panum, Thomas Kobber</au><au>Jha, Somesh</au><au>Chalasani, Prasad</au><au>Page, David</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CAUSE: Learning Granger Causality from Event Sequences using Attribution Methods</atitle><jtitle>arXiv.org</jtitle><date>2020-02-18</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We study the problem of learning Granger causality between event types from asynchronous, interdependent, multi-type event sequences. Existing work suffers from either limited model flexibility or poor model explainability and thus fails to uncover Granger causality across a wide variety of event sequences with diverse event interdependency. To address these weaknesses, we propose CAUSE (Causality from AttribUtions on Sequence of Events), a novel framework for the studied task. The key idea of CAUSE is to first implicitly capture the underlying event interdependency by fitting a neural point process, and then extract from the process a Granger causality statistic using an axiomatic attribution method. Across multiple datasets riddled with diverse event interdependency, we demonstrate that CAUSE achieves superior performance on correctly inferring the inter-type Granger causality over a range of state-of-the-art methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2359092526
source Publicly Available Content Database
subjects Causality
Cointegration analysis
Learning
title CAUSE: Learning Granger Causality from Event Sequences using Attribution Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CAUSE:%20Learning%20Granger%20Causality%20from%20Event%20Sequences%20using%20Attribution%20Methods&rft.jtitle=arXiv.org&rft.au=Zhang,%20Wei&rft.date=2020-02-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2359092526%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23590925263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2359092526&rft_id=info:pmid/&rfr_iscdi=true