Loading…
Effect of water vapour on morphology of the Si/Ti-rich phase at the interface between oxide layer and aluminide coating
[Display omitted] •A continuous Si/Ti-rich phase can prevent O inter diffusion in aluminide coating.•The Si/Ti-rich phase becomes discontinuous in air plus water vapour at 1050 °C.•Si3Ti5 phase is oxidized and decomposed in air plus water vapour at 1050 °C.•Al consumption in aluminide coating is mai...
Saved in:
Published in: | Corrosion science 2020-02, Vol.163, p.108240, Article 108240 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-1a781c4b44496c10427d971662954ccd20723c7593fdb0fbaa29de28f74e80123 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-1a781c4b44496c10427d971662954ccd20723c7593fdb0fbaa29de28f74e80123 |
container_end_page | |
container_issue | |
container_start_page | 108240 |
container_title | Corrosion science |
container_volume | 163 |
creator | Li, Chao Huang, Taihong Song, Peng Yuan, Xiaohu Feng, Jing Lü, Kaiyue Li, Qiaolei Duan, Wenhao Lu, Jiansheng |
description | [Display omitted]
•A continuous Si/Ti-rich phase can prevent O inter diffusion in aluminide coating.•The Si/Ti-rich phase becomes discontinuous in air plus water vapour at 1050 °C.•Si3Ti5 phase is oxidized and decomposed in air plus water vapour at 1050 °C.•Al consumption in aluminide coating is mainly outward diffusion to form Al2O3.
Silicon-doped aluminide (Al–Si) coatings were prepared on IN738 superalloy by hot dip. The microstructure and oxidation performance of the Al–Si coatings was investigated at 1050 °C in air and air plus water vapour. Water vapour can significantly reduce the oxidation resistance of Al–Si coatings. The Kirkendall voids were formed under the oxide layer in water vapour environment. The formation of a continuous Si/Ti-rich (SiCr3/Si3Ti5 phases) phase below the oxide layer could possibly slow down the internal oxidation, which increased the coating’s oxidation resistance in air. In addition, the Si/Ti-rich phase was unstable in air plus water vapour atmosphere. |
doi_str_mv | 10.1016/j.corsci.2019.108240 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2359338371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X19306407</els_id><sourcerecordid>2359338371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-1a781c4b44496c10427d971662954ccd20723c7593fdb0fbaa29de28f74e80123</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB__wEXA9bQ3j85jI0ipDyi4sIK7kMnctCntZMxMW_vvzTiuXQVOzjmX8xFyx2DMgKWTzdj40Bo35sCKKOVcwhkZsTwrEpBFek5GAAySQuSfl-SqbTcAEL0wIse5tWg66i096g4DPejG7wP1Nd350Kz91q9O_W-3RvruJkuXBGfWtFnrFqnufnVXx6TVBmmJ3RGxpv7bVUi3-hQbdV1Rvd3vXN1rxuvO1asbcmH1tsXbv_eafDzNl7OXZPH2_Dp7XCRGCNklTGc5M7KUMs4wDCTPqiJjacqLqTSm4pBxYbJpIWxVgi215kWFPLeZxBwYF9fkfuhtgv_aY9upTZxXx5OKixgTuchYdMnBZYJv24BWNcHtdDgpBqpHrDZqQKx6xGpAHGMPQwzjgoPDoKIDa4OVCxGqqrz7v-AHa6aGlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359338371</pqid></control><display><type>article</type><title>Effect of water vapour on morphology of the Si/Ti-rich phase at the interface between oxide layer and aluminide coating</title><source>ScienceDirect Journals</source><creator>Li, Chao ; Huang, Taihong ; Song, Peng ; Yuan, Xiaohu ; Feng, Jing ; Lü, Kaiyue ; Li, Qiaolei ; Duan, Wenhao ; Lu, Jiansheng</creator><creatorcontrib>Li, Chao ; Huang, Taihong ; Song, Peng ; Yuan, Xiaohu ; Feng, Jing ; Lü, Kaiyue ; Li, Qiaolei ; Duan, Wenhao ; Lu, Jiansheng</creatorcontrib><description>[Display omitted]
•A continuous Si/Ti-rich phase can prevent O inter diffusion in aluminide coating.•The Si/Ti-rich phase becomes discontinuous in air plus water vapour at 1050 °C.•Si3Ti5 phase is oxidized and decomposed in air plus water vapour at 1050 °C.•Al consumption in aluminide coating is mainly outward diffusion to form Al2O3.
Silicon-doped aluminide (Al–Si) coatings were prepared on IN738 superalloy by hot dip. The microstructure and oxidation performance of the Al–Si coatings was investigated at 1050 °C in air and air plus water vapour. Water vapour can significantly reduce the oxidation resistance of Al–Si coatings. The Kirkendall voids were formed under the oxide layer in water vapour environment. The formation of a continuous Si/Ti-rich (SiCr3/Si3Ti5 phases) phase below the oxide layer could possibly slow down the internal oxidation, which increased the coating’s oxidation resistance in air. In addition, the Si/Ti-rich phase was unstable in air plus water vapour atmosphere.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2019.108240</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Aluminides ; Aluminium ; Aluminum ; Dip coatings ; Hot dipping ; Intermetallic compounds ; Intermetallics ; Internal oxidation ; Morphology ; Oxidation ; Oxidation resistance ; SEM ; Silicon ; Superalloys ; Water vapor ; XRD</subject><ispartof>Corrosion science, 2020-02, Vol.163, p.108240, Article 108240</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-1a781c4b44496c10427d971662954ccd20723c7593fdb0fbaa29de28f74e80123</citedby><cites>FETCH-LOGICAL-c334t-1a781c4b44496c10427d971662954ccd20723c7593fdb0fbaa29de28f74e80123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Huang, Taihong</creatorcontrib><creatorcontrib>Song, Peng</creatorcontrib><creatorcontrib>Yuan, Xiaohu</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><creatorcontrib>Lü, Kaiyue</creatorcontrib><creatorcontrib>Li, Qiaolei</creatorcontrib><creatorcontrib>Duan, Wenhao</creatorcontrib><creatorcontrib>Lu, Jiansheng</creatorcontrib><title>Effect of water vapour on morphology of the Si/Ti-rich phase at the interface between oxide layer and aluminide coating</title><title>Corrosion science</title><description>[Display omitted]
•A continuous Si/Ti-rich phase can prevent O inter diffusion in aluminide coating.•The Si/Ti-rich phase becomes discontinuous in air plus water vapour at 1050 °C.•Si3Ti5 phase is oxidized and decomposed in air plus water vapour at 1050 °C.•Al consumption in aluminide coating is mainly outward diffusion to form Al2O3.
Silicon-doped aluminide (Al–Si) coatings were prepared on IN738 superalloy by hot dip. The microstructure and oxidation performance of the Al–Si coatings was investigated at 1050 °C in air and air plus water vapour. Water vapour can significantly reduce the oxidation resistance of Al–Si coatings. The Kirkendall voids were formed under the oxide layer in water vapour environment. The formation of a continuous Si/Ti-rich (SiCr3/Si3Ti5 phases) phase below the oxide layer could possibly slow down the internal oxidation, which increased the coating’s oxidation resistance in air. In addition, the Si/Ti-rich phase was unstable in air plus water vapour atmosphere.</description><subject>Aluminides</subject><subject>Aluminium</subject><subject>Aluminum</subject><subject>Dip coatings</subject><subject>Hot dipping</subject><subject>Intermetallic compounds</subject><subject>Intermetallics</subject><subject>Internal oxidation</subject><subject>Morphology</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>SEM</subject><subject>Silicon</subject><subject>Superalloys</subject><subject>Water vapor</subject><subject>XRD</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWB__wEXA9bQ3j85jI0ipDyi4sIK7kMnctCntZMxMW_vvzTiuXQVOzjmX8xFyx2DMgKWTzdj40Bo35sCKKOVcwhkZsTwrEpBFek5GAAySQuSfl-SqbTcAEL0wIse5tWg66i096g4DPejG7wP1Nd350Kz91q9O_W-3RvruJkuXBGfWtFnrFqnufnVXx6TVBmmJ3RGxpv7bVUi3-hQbdV1Rvd3vXN1rxuvO1asbcmH1tsXbv_eafDzNl7OXZPH2_Dp7XCRGCNklTGc5M7KUMs4wDCTPqiJjacqLqTSm4pBxYbJpIWxVgi215kWFPLeZxBwYF9fkfuhtgv_aY9upTZxXx5OKixgTuchYdMnBZYJv24BWNcHtdDgpBqpHrDZqQKx6xGpAHGMPQwzjgoPDoKIDa4OVCxGqqrz7v-AHa6aGlw</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Li, Chao</creator><creator>Huang, Taihong</creator><creator>Song, Peng</creator><creator>Yuan, Xiaohu</creator><creator>Feng, Jing</creator><creator>Lü, Kaiyue</creator><creator>Li, Qiaolei</creator><creator>Duan, Wenhao</creator><creator>Lu, Jiansheng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>202002</creationdate><title>Effect of water vapour on morphology of the Si/Ti-rich phase at the interface between oxide layer and aluminide coating</title><author>Li, Chao ; Huang, Taihong ; Song, Peng ; Yuan, Xiaohu ; Feng, Jing ; Lü, Kaiyue ; Li, Qiaolei ; Duan, Wenhao ; Lu, Jiansheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-1a781c4b44496c10427d971662954ccd20723c7593fdb0fbaa29de28f74e80123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminides</topic><topic>Aluminium</topic><topic>Aluminum</topic><topic>Dip coatings</topic><topic>Hot dipping</topic><topic>Intermetallic compounds</topic><topic>Intermetallics</topic><topic>Internal oxidation</topic><topic>Morphology</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>SEM</topic><topic>Silicon</topic><topic>Superalloys</topic><topic>Water vapor</topic><topic>XRD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Huang, Taihong</creatorcontrib><creatorcontrib>Song, Peng</creatorcontrib><creatorcontrib>Yuan, Xiaohu</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><creatorcontrib>Lü, Kaiyue</creatorcontrib><creatorcontrib>Li, Qiaolei</creatorcontrib><creatorcontrib>Duan, Wenhao</creatorcontrib><creatorcontrib>Lu, Jiansheng</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chao</au><au>Huang, Taihong</au><au>Song, Peng</au><au>Yuan, Xiaohu</au><au>Feng, Jing</au><au>Lü, Kaiyue</au><au>Li, Qiaolei</au><au>Duan, Wenhao</au><au>Lu, Jiansheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of water vapour on morphology of the Si/Ti-rich phase at the interface between oxide layer and aluminide coating</atitle><jtitle>Corrosion science</jtitle><date>2020-02</date><risdate>2020</risdate><volume>163</volume><spage>108240</spage><pages>108240-</pages><artnum>108240</artnum><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>[Display omitted]
•A continuous Si/Ti-rich phase can prevent O inter diffusion in aluminide coating.•The Si/Ti-rich phase becomes discontinuous in air plus water vapour at 1050 °C.•Si3Ti5 phase is oxidized and decomposed in air plus water vapour at 1050 °C.•Al consumption in aluminide coating is mainly outward diffusion to form Al2O3.
Silicon-doped aluminide (Al–Si) coatings were prepared on IN738 superalloy by hot dip. The microstructure and oxidation performance of the Al–Si coatings was investigated at 1050 °C in air and air plus water vapour. Water vapour can significantly reduce the oxidation resistance of Al–Si coatings. The Kirkendall voids were formed under the oxide layer in water vapour environment. The formation of a continuous Si/Ti-rich (SiCr3/Si3Ti5 phases) phase below the oxide layer could possibly slow down the internal oxidation, which increased the coating’s oxidation resistance in air. In addition, the Si/Ti-rich phase was unstable in air plus water vapour atmosphere.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2019.108240</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-938X |
ispartof | Corrosion science, 2020-02, Vol.163, p.108240, Article 108240 |
issn | 0010-938X 1879-0496 |
language | eng |
recordid | cdi_proquest_journals_2359338371 |
source | ScienceDirect Journals |
subjects | Aluminides Aluminium Aluminum Dip coatings Hot dipping Intermetallic compounds Intermetallics Internal oxidation Morphology Oxidation Oxidation resistance SEM Silicon Superalloys Water vapor XRD |
title | Effect of water vapour on morphology of the Si/Ti-rich phase at the interface between oxide layer and aluminide coating |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20water%20vapour%20on%20morphology%20of%20the%20Si/Ti-rich%20phase%20at%20the%20interface%20between%20oxide%20layer%20and%20aluminide%20coating&rft.jtitle=Corrosion%20science&rft.au=Li,%20Chao&rft.date=2020-02&rft.volume=163&rft.spage=108240&rft.pages=108240-&rft.artnum=108240&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2019.108240&rft_dat=%3Cproquest_cross%3E2359338371%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-1a781c4b44496c10427d971662954ccd20723c7593fdb0fbaa29de28f74e80123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2359338371&rft_id=info:pmid/&rfr_iscdi=true |