Loading…

Effect of water vapour on morphology of the Si/Ti-rich phase at the interface between oxide layer and aluminide coating

[Display omitted] •A continuous Si/Ti-rich phase can prevent O inter diffusion in aluminide coating.•The Si/Ti-rich phase becomes discontinuous in air plus water vapour at 1050 °C.•Si3Ti5 phase is oxidized and decomposed in air plus water vapour at 1050 °C.•Al consumption in aluminide coating is mai...

Full description

Saved in:
Bibliographic Details
Published in:Corrosion science 2020-02, Vol.163, p.108240, Article 108240
Main Authors: Li, Chao, Huang, Taihong, Song, Peng, Yuan, Xiaohu, Feng, Jing, Lü, Kaiyue, Li, Qiaolei, Duan, Wenhao, Lu, Jiansheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-1a781c4b44496c10427d971662954ccd20723c7593fdb0fbaa29de28f74e80123
cites cdi_FETCH-LOGICAL-c334t-1a781c4b44496c10427d971662954ccd20723c7593fdb0fbaa29de28f74e80123
container_end_page
container_issue
container_start_page 108240
container_title Corrosion science
container_volume 163
creator Li, Chao
Huang, Taihong
Song, Peng
Yuan, Xiaohu
Feng, Jing
Lü, Kaiyue
Li, Qiaolei
Duan, Wenhao
Lu, Jiansheng
description [Display omitted] •A continuous Si/Ti-rich phase can prevent O inter diffusion in aluminide coating.•The Si/Ti-rich phase becomes discontinuous in air plus water vapour at 1050 °C.•Si3Ti5 phase is oxidized and decomposed in air plus water vapour at 1050 °C.•Al consumption in aluminide coating is mainly outward diffusion to form Al2O3. Silicon-doped aluminide (Al–Si) coatings were prepared on IN738 superalloy by hot dip. The microstructure and oxidation performance of the Al–Si coatings was investigated at 1050 °C in air and air plus water vapour. Water vapour can significantly reduce the oxidation resistance of Al–Si coatings. The Kirkendall voids were formed under the oxide layer in water vapour environment. The formation of a continuous Si/Ti-rich (SiCr3/Si3Ti5 phases) phase below the oxide layer could possibly slow down the internal oxidation, which increased the coating’s oxidation resistance in air. In addition, the Si/Ti-rich phase was unstable in air plus water vapour atmosphere.
doi_str_mv 10.1016/j.corsci.2019.108240
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2359338371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X19306407</els_id><sourcerecordid>2359338371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-1a781c4b44496c10427d971662954ccd20723c7593fdb0fbaa29de28f74e80123</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB__wEXA9bQ3j85jI0ipDyi4sIK7kMnctCntZMxMW_vvzTiuXQVOzjmX8xFyx2DMgKWTzdj40Bo35sCKKOVcwhkZsTwrEpBFek5GAAySQuSfl-SqbTcAEL0wIse5tWg66i096g4DPejG7wP1Nd350Kz91q9O_W-3RvruJkuXBGfWtFnrFqnufnVXx6TVBmmJ3RGxpv7bVUi3-hQbdV1Rvd3vXN1rxuvO1asbcmH1tsXbv_eafDzNl7OXZPH2_Dp7XCRGCNklTGc5M7KUMs4wDCTPqiJjacqLqTSm4pBxYbJpIWxVgi215kWFPLeZxBwYF9fkfuhtgv_aY9upTZxXx5OKixgTuchYdMnBZYJv24BWNcHtdDgpBqpHrDZqQKx6xGpAHGMPQwzjgoPDoKIDa4OVCxGqqrz7v-AHa6aGlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359338371</pqid></control><display><type>article</type><title>Effect of water vapour on morphology of the Si/Ti-rich phase at the interface between oxide layer and aluminide coating</title><source>ScienceDirect Journals</source><creator>Li, Chao ; Huang, Taihong ; Song, Peng ; Yuan, Xiaohu ; Feng, Jing ; Lü, Kaiyue ; Li, Qiaolei ; Duan, Wenhao ; Lu, Jiansheng</creator><creatorcontrib>Li, Chao ; Huang, Taihong ; Song, Peng ; Yuan, Xiaohu ; Feng, Jing ; Lü, Kaiyue ; Li, Qiaolei ; Duan, Wenhao ; Lu, Jiansheng</creatorcontrib><description>[Display omitted] •A continuous Si/Ti-rich phase can prevent O inter diffusion in aluminide coating.•The Si/Ti-rich phase becomes discontinuous in air plus water vapour at 1050 °C.•Si3Ti5 phase is oxidized and decomposed in air plus water vapour at 1050 °C.•Al consumption in aluminide coating is mainly outward diffusion to form Al2O3. Silicon-doped aluminide (Al–Si) coatings were prepared on IN738 superalloy by hot dip. The microstructure and oxidation performance of the Al–Si coatings was investigated at 1050 °C in air and air plus water vapour. Water vapour can significantly reduce the oxidation resistance of Al–Si coatings. The Kirkendall voids were formed under the oxide layer in water vapour environment. The formation of a continuous Si/Ti-rich (SiCr3/Si3Ti5 phases) phase below the oxide layer could possibly slow down the internal oxidation, which increased the coating’s oxidation resistance in air. In addition, the Si/Ti-rich phase was unstable in air plus water vapour atmosphere.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2019.108240</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Aluminides ; Aluminium ; Aluminum ; Dip coatings ; Hot dipping ; Intermetallic compounds ; Intermetallics ; Internal oxidation ; Morphology ; Oxidation ; Oxidation resistance ; SEM ; Silicon ; Superalloys ; Water vapor ; XRD</subject><ispartof>Corrosion science, 2020-02, Vol.163, p.108240, Article 108240</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-1a781c4b44496c10427d971662954ccd20723c7593fdb0fbaa29de28f74e80123</citedby><cites>FETCH-LOGICAL-c334t-1a781c4b44496c10427d971662954ccd20723c7593fdb0fbaa29de28f74e80123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Huang, Taihong</creatorcontrib><creatorcontrib>Song, Peng</creatorcontrib><creatorcontrib>Yuan, Xiaohu</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><creatorcontrib>Lü, Kaiyue</creatorcontrib><creatorcontrib>Li, Qiaolei</creatorcontrib><creatorcontrib>Duan, Wenhao</creatorcontrib><creatorcontrib>Lu, Jiansheng</creatorcontrib><title>Effect of water vapour on morphology of the Si/Ti-rich phase at the interface between oxide layer and aluminide coating</title><title>Corrosion science</title><description>[Display omitted] •A continuous Si/Ti-rich phase can prevent O inter diffusion in aluminide coating.•The Si/Ti-rich phase becomes discontinuous in air plus water vapour at 1050 °C.•Si3Ti5 phase is oxidized and decomposed in air plus water vapour at 1050 °C.•Al consumption in aluminide coating is mainly outward diffusion to form Al2O3. Silicon-doped aluminide (Al–Si) coatings were prepared on IN738 superalloy by hot dip. The microstructure and oxidation performance of the Al–Si coatings was investigated at 1050 °C in air and air plus water vapour. Water vapour can significantly reduce the oxidation resistance of Al–Si coatings. The Kirkendall voids were formed under the oxide layer in water vapour environment. The formation of a continuous Si/Ti-rich (SiCr3/Si3Ti5 phases) phase below the oxide layer could possibly slow down the internal oxidation, which increased the coating’s oxidation resistance in air. In addition, the Si/Ti-rich phase was unstable in air plus water vapour atmosphere.</description><subject>Aluminides</subject><subject>Aluminium</subject><subject>Aluminum</subject><subject>Dip coatings</subject><subject>Hot dipping</subject><subject>Intermetallic compounds</subject><subject>Intermetallics</subject><subject>Internal oxidation</subject><subject>Morphology</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>SEM</subject><subject>Silicon</subject><subject>Superalloys</subject><subject>Water vapor</subject><subject>XRD</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWB__wEXA9bQ3j85jI0ipDyi4sIK7kMnctCntZMxMW_vvzTiuXQVOzjmX8xFyx2DMgKWTzdj40Bo35sCKKOVcwhkZsTwrEpBFek5GAAySQuSfl-SqbTcAEL0wIse5tWg66i096g4DPejG7wP1Nd350Kz91q9O_W-3RvruJkuXBGfWtFnrFqnufnVXx6TVBmmJ3RGxpv7bVUi3-hQbdV1Rvd3vXN1rxuvO1asbcmH1tsXbv_eafDzNl7OXZPH2_Dp7XCRGCNklTGc5M7KUMs4wDCTPqiJjacqLqTSm4pBxYbJpIWxVgi215kWFPLeZxBwYF9fkfuhtgv_aY9upTZxXx5OKixgTuchYdMnBZYJv24BWNcHtdDgpBqpHrDZqQKx6xGpAHGMPQwzjgoPDoKIDa4OVCxGqqrz7v-AHa6aGlw</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Li, Chao</creator><creator>Huang, Taihong</creator><creator>Song, Peng</creator><creator>Yuan, Xiaohu</creator><creator>Feng, Jing</creator><creator>Lü, Kaiyue</creator><creator>Li, Qiaolei</creator><creator>Duan, Wenhao</creator><creator>Lu, Jiansheng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>202002</creationdate><title>Effect of water vapour on morphology of the Si/Ti-rich phase at the interface between oxide layer and aluminide coating</title><author>Li, Chao ; Huang, Taihong ; Song, Peng ; Yuan, Xiaohu ; Feng, Jing ; Lü, Kaiyue ; Li, Qiaolei ; Duan, Wenhao ; Lu, Jiansheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-1a781c4b44496c10427d971662954ccd20723c7593fdb0fbaa29de28f74e80123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminides</topic><topic>Aluminium</topic><topic>Aluminum</topic><topic>Dip coatings</topic><topic>Hot dipping</topic><topic>Intermetallic compounds</topic><topic>Intermetallics</topic><topic>Internal oxidation</topic><topic>Morphology</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>SEM</topic><topic>Silicon</topic><topic>Superalloys</topic><topic>Water vapor</topic><topic>XRD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Huang, Taihong</creatorcontrib><creatorcontrib>Song, Peng</creatorcontrib><creatorcontrib>Yuan, Xiaohu</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><creatorcontrib>Lü, Kaiyue</creatorcontrib><creatorcontrib>Li, Qiaolei</creatorcontrib><creatorcontrib>Duan, Wenhao</creatorcontrib><creatorcontrib>Lu, Jiansheng</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chao</au><au>Huang, Taihong</au><au>Song, Peng</au><au>Yuan, Xiaohu</au><au>Feng, Jing</au><au>Lü, Kaiyue</au><au>Li, Qiaolei</au><au>Duan, Wenhao</au><au>Lu, Jiansheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of water vapour on morphology of the Si/Ti-rich phase at the interface between oxide layer and aluminide coating</atitle><jtitle>Corrosion science</jtitle><date>2020-02</date><risdate>2020</risdate><volume>163</volume><spage>108240</spage><pages>108240-</pages><artnum>108240</artnum><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>[Display omitted] •A continuous Si/Ti-rich phase can prevent O inter diffusion in aluminide coating.•The Si/Ti-rich phase becomes discontinuous in air plus water vapour at 1050 °C.•Si3Ti5 phase is oxidized and decomposed in air plus water vapour at 1050 °C.•Al consumption in aluminide coating is mainly outward diffusion to form Al2O3. Silicon-doped aluminide (Al–Si) coatings were prepared on IN738 superalloy by hot dip. The microstructure and oxidation performance of the Al–Si coatings was investigated at 1050 °C in air and air plus water vapour. Water vapour can significantly reduce the oxidation resistance of Al–Si coatings. The Kirkendall voids were formed under the oxide layer in water vapour environment. The formation of a continuous Si/Ti-rich (SiCr3/Si3Ti5 phases) phase below the oxide layer could possibly slow down the internal oxidation, which increased the coating’s oxidation resistance in air. In addition, the Si/Ti-rich phase was unstable in air plus water vapour atmosphere.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2019.108240</doi></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2020-02, Vol.163, p.108240, Article 108240
issn 0010-938X
1879-0496
language eng
recordid cdi_proquest_journals_2359338371
source ScienceDirect Journals
subjects Aluminides
Aluminium
Aluminum
Dip coatings
Hot dipping
Intermetallic compounds
Intermetallics
Internal oxidation
Morphology
Oxidation
Oxidation resistance
SEM
Silicon
Superalloys
Water vapor
XRD
title Effect of water vapour on morphology of the Si/Ti-rich phase at the interface between oxide layer and aluminide coating
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20water%20vapour%20on%20morphology%20of%20the%20Si/Ti-rich%20phase%20at%20the%20interface%20between%20oxide%20layer%20and%20aluminide%20coating&rft.jtitle=Corrosion%20science&rft.au=Li,%20Chao&rft.date=2020-02&rft.volume=163&rft.spage=108240&rft.pages=108240-&rft.artnum=108240&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2019.108240&rft_dat=%3Cproquest_cross%3E2359338371%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-1a781c4b44496c10427d971662954ccd20723c7593fdb0fbaa29de28f74e80123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2359338371&rft_id=info:pmid/&rfr_iscdi=true