Loading…
Equivalence Testing of Weighted Automata over Partially Commutative Monoids
We study \emph{multiplicity equivalence} testing of automata over partially commutative monoids (pc monoids) and show efficient algorithms in special cases, exploiting the structure of the underlying non-commutation graph of the monoid. Specifically, if the clique cover number of the non-commutation...
Saved in:
Published in: | arXiv.org 2020-05 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Arvind, V Chatterjee, Abhranil Datta, Rajit Mukhopadhyay, Partha |
description | We study \emph{multiplicity equivalence} testing of automata over partially commutative monoids (pc monoids) and show efficient algorithms in special cases, exploiting the structure of the underlying non-commutation graph of the monoid. Specifically, if the clique cover number of the non-commutation graph (the minimum number of cliques covering the graph) of the pc monoid is a constant, we obtain a deterministic quasi-polynomial time algorithm. As a consequence, we also obtain the first deterministic quasi-polynomial time algorithms for multiplicity equivalence testing of \(k\)-tape automata and for equivalence testing of deterministic \(k\)-tape automata for constant \(k\). Prior to this, a randomized polynomial-time algorithm for the above problems was shown by Worrell [ICALP 2013]. We also consider pc monoids for which the non-commutation graphs have cover consisting of at most \(k\) cliques and star graphs for any constant \(k\). We obtain randomized polynomial-time algorithm for multiplicity equivalence testing of automata over such monoids. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2359829257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359829257</sourcerecordid><originalsourceid>FETCH-proquest_journals_23598292573</originalsourceid><addsrcrecordid>eNqNjM0KgkAYAJcgSMp3-KCzYN-2qccQI4igg9BRllxtZd3N_RF6-zr0AJ3mMMMsSISU7pJ8j7gisXNDmqZ4yJAxGpFLNQU5cyX0Q0AtnJe6B9PBXcj-6UULx-DNyD0HMwsLN2695Eq9oTTjGDz3chZwNdrI1m3IsuPKifjHNdmeqro8Jy9rpvB9N4MJVn9Vg5QVORbIMvpf9QE9wz2f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359829257</pqid></control><display><type>article</type><title>Equivalence Testing of Weighted Automata over Partially Commutative Monoids</title><source>Publicly Available Content Database</source><creator>Arvind, V ; Chatterjee, Abhranil ; Datta, Rajit ; Mukhopadhyay, Partha</creator><creatorcontrib>Arvind, V ; Chatterjee, Abhranil ; Datta, Rajit ; Mukhopadhyay, Partha</creatorcontrib><description>We study \emph{multiplicity equivalence} testing of automata over partially commutative monoids (pc monoids) and show efficient algorithms in special cases, exploiting the structure of the underlying non-commutation graph of the monoid. Specifically, if the clique cover number of the non-commutation graph (the minimum number of cliques covering the graph) of the pc monoid is a constant, we obtain a deterministic quasi-polynomial time algorithm. As a consequence, we also obtain the first deterministic quasi-polynomial time algorithms for multiplicity equivalence testing of \(k\)-tape automata and for equivalence testing of deterministic \(k\)-tape automata for constant \(k\). Prior to this, a randomized polynomial-time algorithm for the above problems was shown by Worrell [ICALP 2013]. We also consider pc monoids for which the non-commutation graphs have cover consisting of at most \(k\) cliques and star graphs for any constant \(k\). We obtain randomized polynomial-time algorithm for multiplicity equivalence testing of automata over such monoids.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Commutation ; Equivalence ; Graphs ; Monoids ; Polynomials ; Randomization ; Traveling salesman problem</subject><ispartof>arXiv.org, 2020-05</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2359829257?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Arvind, V</creatorcontrib><creatorcontrib>Chatterjee, Abhranil</creatorcontrib><creatorcontrib>Datta, Rajit</creatorcontrib><creatorcontrib>Mukhopadhyay, Partha</creatorcontrib><title>Equivalence Testing of Weighted Automata over Partially Commutative Monoids</title><title>arXiv.org</title><description>We study \emph{multiplicity equivalence} testing of automata over partially commutative monoids (pc monoids) and show efficient algorithms in special cases, exploiting the structure of the underlying non-commutation graph of the monoid. Specifically, if the clique cover number of the non-commutation graph (the minimum number of cliques covering the graph) of the pc monoid is a constant, we obtain a deterministic quasi-polynomial time algorithm. As a consequence, we also obtain the first deterministic quasi-polynomial time algorithms for multiplicity equivalence testing of \(k\)-tape automata and for equivalence testing of deterministic \(k\)-tape automata for constant \(k\). Prior to this, a randomized polynomial-time algorithm for the above problems was shown by Worrell [ICALP 2013]. We also consider pc monoids for which the non-commutation graphs have cover consisting of at most \(k\) cliques and star graphs for any constant \(k\). We obtain randomized polynomial-time algorithm for multiplicity equivalence testing of automata over such monoids.</description><subject>Algorithms</subject><subject>Commutation</subject><subject>Equivalence</subject><subject>Graphs</subject><subject>Monoids</subject><subject>Polynomials</subject><subject>Randomization</subject><subject>Traveling salesman problem</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjM0KgkAYAJcgSMp3-KCzYN-2qccQI4igg9BRllxtZd3N_RF6-zr0AJ3mMMMsSISU7pJ8j7gisXNDmqZ4yJAxGpFLNQU5cyX0Q0AtnJe6B9PBXcj-6UULx-DNyD0HMwsLN2695Eq9oTTjGDz3chZwNdrI1m3IsuPKifjHNdmeqro8Jy9rpvB9N4MJVn9Vg5QVORbIMvpf9QE9wz2f</recordid><startdate>20200531</startdate><enddate>20200531</enddate><creator>Arvind, V</creator><creator>Chatterjee, Abhranil</creator><creator>Datta, Rajit</creator><creator>Mukhopadhyay, Partha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200531</creationdate><title>Equivalence Testing of Weighted Automata over Partially Commutative Monoids</title><author>Arvind, V ; Chatterjee, Abhranil ; Datta, Rajit ; Mukhopadhyay, Partha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23598292573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Commutation</topic><topic>Equivalence</topic><topic>Graphs</topic><topic>Monoids</topic><topic>Polynomials</topic><topic>Randomization</topic><topic>Traveling salesman problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Arvind, V</creatorcontrib><creatorcontrib>Chatterjee, Abhranil</creatorcontrib><creatorcontrib>Datta, Rajit</creatorcontrib><creatorcontrib>Mukhopadhyay, Partha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arvind, V</au><au>Chatterjee, Abhranil</au><au>Datta, Rajit</au><au>Mukhopadhyay, Partha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Equivalence Testing of Weighted Automata over Partially Commutative Monoids</atitle><jtitle>arXiv.org</jtitle><date>2020-05-31</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We study \emph{multiplicity equivalence} testing of automata over partially commutative monoids (pc monoids) and show efficient algorithms in special cases, exploiting the structure of the underlying non-commutation graph of the monoid. Specifically, if the clique cover number of the non-commutation graph (the minimum number of cliques covering the graph) of the pc monoid is a constant, we obtain a deterministic quasi-polynomial time algorithm. As a consequence, we also obtain the first deterministic quasi-polynomial time algorithms for multiplicity equivalence testing of \(k\)-tape automata and for equivalence testing of deterministic \(k\)-tape automata for constant \(k\). Prior to this, a randomized polynomial-time algorithm for the above problems was shown by Worrell [ICALP 2013]. We also consider pc monoids for which the non-commutation graphs have cover consisting of at most \(k\) cliques and star graphs for any constant \(k\). We obtain randomized polynomial-time algorithm for multiplicity equivalence testing of automata over such monoids.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2359829257 |
source | Publicly Available Content Database |
subjects | Algorithms Commutation Equivalence Graphs Monoids Polynomials Randomization Traveling salesman problem |
title | Equivalence Testing of Weighted Automata over Partially Commutative Monoids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Equivalence%20Testing%20of%20Weighted%20Automata%20over%20Partially%20Commutative%20Monoids&rft.jtitle=arXiv.org&rft.au=Arvind,%20V&rft.date=2020-05-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2359829257%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23598292573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2359829257&rft_id=info:pmid/&rfr_iscdi=true |