Loading…
Reducing the Dynamical Degradation of Digital Chaotic Maps with Time-Delay Linear Feedback and Parameter Perturbation
Digital chaotic maps are not secure enough for cryptographic applications due to their dynamical degradation. In order to improve their dynamics, in this paper, a novel method with time-delay linear feedback and parameter perturbation is proposed. The delayed state variable is used to construct the...
Saved in:
Published in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-593a258560828ac3b6f4f83590d1309cec3057ed52f9b13b52c342d68f0e01aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-593a258560828ac3b6f4f83590d1309cec3057ed52f9b13b52c342d68f0e01aa3 |
container_end_page | 12 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Liu, Bocheng Liu, Lingfeng Xiang, Hongyue |
description | Digital chaotic maps are not secure enough for cryptographic applications due to their dynamical degradation. In order to improve their dynamics, in this paper, a novel method with time-delay linear feedback and parameter perturbation is proposed. The delayed state variable is used to construct the linear feedback function and parameter perturbation function. This method is universal for all different digital chaotic maps. Here, two examples are presented: one is 1D logistic map and the other is 2D Baker map. To show the effectiveness of this method, we take some numerical experiments, including trajectory and phase space analysis, correlation analysis, period analysis, and complexity analysis. All the numerical results prove that the method can greatly improve the dynamics of digital chaotic maps and is quite competitive with other proposed methods. Furthermore, a simple pseudorandom bit generator (PRBG) based on digital Baker map is proposed to show its potential application. The proposed PRBG is completely constructed by the digital chaotic map, without any other complex operations. Several numerical results indicate that this PRBG has good randomness and high complexity level. |
doi_str_mv | 10.1155/2020/4926937 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2361807081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2361807081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-593a258560828ac3b6f4f83590d1309cec3057ed52f9b13b52c342d68f0e01aa3</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuAgCtbqzbMseNTY2d1sPo7SWBUqFqngLUw2k3Zrm9TNhtJ_b2oEj55mGB7egdfzLjncca7USICAUZCIMJHRkTfgKpS-4kF03O0gAp8L-XHqnTXNCkBwxeOB175R0WpTLZhbEkv3FW6MxjVLaWGxQGfqitUlS83CuO48XmLtjGYvuG3Yzrglm5sN-Smtcc-mpiK0bEJU5Kg_GVYFm6HFDTmybEbWtTb_iTz3TkpcN3TxO4fe--RhPn7yp6-Pz-P7qa9lCM5XiUShYhVCLGLUMg_LoIylSqDgEhJNWoKKqFCiTHIucyW0DEQRxiUQcEQ59K773K2tv1pqXLaqW1t1LzMhQx5DBDHv1G2vtK2bxlKZba3ZoN1nHLJDsdmh2Oy32I7f9HxpqgJ35j991WvqDJX4p3milAD5DezYgTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2361807081</pqid></control><display><type>article</type><title>Reducing the Dynamical Degradation of Digital Chaotic Maps with Time-Delay Linear Feedback and Parameter Perturbation</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Liu, Bocheng ; Liu, Lingfeng ; Xiang, Hongyue</creator><contributor>Florentin, Eric ; Eric Florentin</contributor><creatorcontrib>Liu, Bocheng ; Liu, Lingfeng ; Xiang, Hongyue ; Florentin, Eric ; Eric Florentin</creatorcontrib><description>Digital chaotic maps are not secure enough for cryptographic applications due to their dynamical degradation. In order to improve their dynamics, in this paper, a novel method with time-delay linear feedback and parameter perturbation is proposed. The delayed state variable is used to construct the linear feedback function and parameter perturbation function. This method is universal for all different digital chaotic maps. Here, two examples are presented: one is 1D logistic map and the other is 2D Baker map. To show the effectiveness of this method, we take some numerical experiments, including trajectory and phase space analysis, correlation analysis, period analysis, and complexity analysis. All the numerical results prove that the method can greatly improve the dynamics of digital chaotic maps and is quite competitive with other proposed methods. Furthermore, a simple pseudorandom bit generator (PRBG) based on digital Baker map is proposed to show its potential application. The proposed PRBG is completely constructed by the digital chaotic map, without any other complex operations. Several numerical results indicate that this PRBG has good randomness and high complexity level.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/4926937</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Chaos theory ; Complexity ; Correlation analysis ; Cryptography ; Degradation ; Delay ; Digital mapping ; Feedback ; Methods ; Parameters ; Perturbation ; Pseudorandom ; State variable ; Trajectory analysis</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Bocheng Liu et al.</rights><rights>Copyright © 2020 Bocheng Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-593a258560828ac3b6f4f83590d1309cec3057ed52f9b13b52c342d68f0e01aa3</citedby><cites>FETCH-LOGICAL-c360t-593a258560828ac3b6f4f83590d1309cec3057ed52f9b13b52c342d68f0e01aa3</cites><orcidid>0000-0002-0298-0191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2361807081/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2361807081?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Florentin, Eric</contributor><contributor>Eric Florentin</contributor><creatorcontrib>Liu, Bocheng</creatorcontrib><creatorcontrib>Liu, Lingfeng</creatorcontrib><creatorcontrib>Xiang, Hongyue</creatorcontrib><title>Reducing the Dynamical Degradation of Digital Chaotic Maps with Time-Delay Linear Feedback and Parameter Perturbation</title><title>Mathematical problems in engineering</title><description>Digital chaotic maps are not secure enough for cryptographic applications due to their dynamical degradation. In order to improve their dynamics, in this paper, a novel method with time-delay linear feedback and parameter perturbation is proposed. The delayed state variable is used to construct the linear feedback function and parameter perturbation function. This method is universal for all different digital chaotic maps. Here, two examples are presented: one is 1D logistic map and the other is 2D Baker map. To show the effectiveness of this method, we take some numerical experiments, including trajectory and phase space analysis, correlation analysis, period analysis, and complexity analysis. All the numerical results prove that the method can greatly improve the dynamics of digital chaotic maps and is quite competitive with other proposed methods. Furthermore, a simple pseudorandom bit generator (PRBG) based on digital Baker map is proposed to show its potential application. The proposed PRBG is completely constructed by the digital chaotic map, without any other complex operations. Several numerical results indicate that this PRBG has good randomness and high complexity level.</description><subject>Chaos theory</subject><subject>Complexity</subject><subject>Correlation analysis</subject><subject>Cryptography</subject><subject>Degradation</subject><subject>Delay</subject><subject>Digital mapping</subject><subject>Feedback</subject><subject>Methods</subject><subject>Parameters</subject><subject>Perturbation</subject><subject>Pseudorandom</subject><subject>State variable</subject><subject>Trajectory analysis</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0E1Lw0AQBuAgCtbqzbMseNTY2d1sPo7SWBUqFqngLUw2k3Zrm9TNhtJ_b2oEj55mGB7egdfzLjncca7USICAUZCIMJHRkTfgKpS-4kF03O0gAp8L-XHqnTXNCkBwxeOB175R0WpTLZhbEkv3FW6MxjVLaWGxQGfqitUlS83CuO48XmLtjGYvuG3Yzrglm5sN-Smtcc-mpiK0bEJU5Kg_GVYFm6HFDTmybEbWtTb_iTz3TkpcN3TxO4fe--RhPn7yp6-Pz-P7qa9lCM5XiUShYhVCLGLUMg_LoIylSqDgEhJNWoKKqFCiTHIucyW0DEQRxiUQcEQ59K773K2tv1pqXLaqW1t1LzMhQx5DBDHv1G2vtK2bxlKZba3ZoN1nHLJDsdmh2Oy32I7f9HxpqgJ35j991WvqDJX4p3milAD5DezYgTg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Bocheng</creator><creator>Liu, Lingfeng</creator><creator>Xiang, Hongyue</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0298-0191</orcidid></search><sort><creationdate>2020</creationdate><title>Reducing the Dynamical Degradation of Digital Chaotic Maps with Time-Delay Linear Feedback and Parameter Perturbation</title><author>Liu, Bocheng ; Liu, Lingfeng ; Xiang, Hongyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-593a258560828ac3b6f4f83590d1309cec3057ed52f9b13b52c342d68f0e01aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chaos theory</topic><topic>Complexity</topic><topic>Correlation analysis</topic><topic>Cryptography</topic><topic>Degradation</topic><topic>Delay</topic><topic>Digital mapping</topic><topic>Feedback</topic><topic>Methods</topic><topic>Parameters</topic><topic>Perturbation</topic><topic>Pseudorandom</topic><topic>State variable</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bocheng</creatorcontrib><creatorcontrib>Liu, Lingfeng</creatorcontrib><creatorcontrib>Xiang, Hongyue</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bocheng</au><au>Liu, Lingfeng</au><au>Xiang, Hongyue</au><au>Florentin, Eric</au><au>Eric Florentin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing the Dynamical Degradation of Digital Chaotic Maps with Time-Delay Linear Feedback and Parameter Perturbation</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Digital chaotic maps are not secure enough for cryptographic applications due to their dynamical degradation. In order to improve their dynamics, in this paper, a novel method with time-delay linear feedback and parameter perturbation is proposed. The delayed state variable is used to construct the linear feedback function and parameter perturbation function. This method is universal for all different digital chaotic maps. Here, two examples are presented: one is 1D logistic map and the other is 2D Baker map. To show the effectiveness of this method, we take some numerical experiments, including trajectory and phase space analysis, correlation analysis, period analysis, and complexity analysis. All the numerical results prove that the method can greatly improve the dynamics of digital chaotic maps and is quite competitive with other proposed methods. Furthermore, a simple pseudorandom bit generator (PRBG) based on digital Baker map is proposed to show its potential application. The proposed PRBG is completely constructed by the digital chaotic map, without any other complex operations. Several numerical results indicate that this PRBG has good randomness and high complexity level.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/4926937</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0298-0191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-12 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2361807081 |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Chaos theory Complexity Correlation analysis Cryptography Degradation Delay Digital mapping Feedback Methods Parameters Perturbation Pseudorandom State variable Trajectory analysis |
title | Reducing the Dynamical Degradation of Digital Chaotic Maps with Time-Delay Linear Feedback and Parameter Perturbation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A18%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20the%20Dynamical%20Degradation%20of%20Digital%20Chaotic%20Maps%20with%20Time-Delay%20Linear%20Feedback%20and%20Parameter%20Perturbation&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Liu,%20Bocheng&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/4926937&rft_dat=%3Cproquest_cross%3E2361807081%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-593a258560828ac3b6f4f83590d1309cec3057ed52f9b13b52c342d68f0e01aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2361807081&rft_id=info:pmid/&rfr_iscdi=true |