Loading…
One-Step Synthesis of Carbon Nanotubes-Modified and Carbon-Coated Li4Ti5O12 and Its Application to Li Half Cell and LiNi0.8Co0.1Mn0.1O2/Li4Ti5O12 Full Cell
Li 4 Ti 5 O 12 (LTO) composites modified with carbon nanotubes (CNTs) and carbon coating (LTO@C/CNTs) were synthesized by a simple solid-state reaction. The carbon-coated layers reduce the growth of the primary particles, inhibit interface side reactions and increase electron conductivity, so CNTs-m...
Saved in:
Published in: | Journal of electronic materials 2020-04, Vol.49 (4), p.2529-2538 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Li
4
Ti
5
O
12
(LTO) composites modified with carbon nanotubes (CNTs) and carbon coating (LTO@C/CNTs) were synthesized by a simple solid-state reaction. The carbon-coated layers reduce the growth of the primary particles, inhibit interface side reactions and increase electron conductivity, so CNTs-modified LTO can form a conductive network and improve the diffusion path of lithium ions. The LTO@C/CNTs composites show a high-rate capability (150 mAh g
−1
at 10 C, 145 mAh g
−1
at 20 C) with good cycling performance (90.1% and 82.8% capacity retentions after 1000 cycles at 10 C and 20 C, respectively). In addition, superior electrochemical performance is also demonstrated in a full cell with a LiNi
0.8
Co
0.1
Mn
0.1
O
2
(NCM811) cathode and LTO@C/CNTs anode (97.1% capacity retentions after 200 cycles at 1 C). The carbon coating and CNTs-modified in LTO can reduce the polarization of potential difference and charge-transfer resistance, improve the diffusion coefficient of lithium ions, and lead to high rate performance and cycle stability. |
---|---|
ISSN: | 0361-5235 1543-186X |
DOI: | 10.1007/s11664-020-07962-w |