Loading…

Curvature types of planar curves for gauges

In this paper results from the differential geometry of curves are extended from normed planes to gauge planes which are obtained by neglecting the symmetry axiom. Based on the gauge analogue of the notion of Birkhoff orthogonality from Banach space theory, we study all curvature types of curves in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geometry 2020, Vol.111 (1), Article 12
Main Authors: Balestro, Vitor, Martini, Horst, Sakaki, Makoto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c246t-44813bb22668498a0722f718fea8cc40d56cd4852aa1c015bd49025f6032b7ed3
cites cdi_FETCH-LOGICAL-c246t-44813bb22668498a0722f718fea8cc40d56cd4852aa1c015bd49025f6032b7ed3
container_end_page
container_issue 1
container_start_page
container_title Journal of geometry
container_volume 111
creator Balestro, Vitor
Martini, Horst
Sakaki, Makoto
description In this paper results from the differential geometry of curves are extended from normed planes to gauge planes which are obtained by neglecting the symmetry axiom. Based on the gauge analogue of the notion of Birkhoff orthogonality from Banach space theory, we study all curvature types of curves in gauge planes, thus generalizing their complete classification for normed planes. We show that (as in the subcase of normed planes) there are four such types, and we call them analogously Minkowski, normal, circular, and arc-length curvature. We study relations between them and extend, based on this, also the notions of evolutes and involutes to gauge planes.
doi_str_mv 10.1007/s00022-020-0526-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2364140103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2364140103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-44813bb22668498a0722f718fea8cc40d56cd4852aa1c015bd49025f6032b7ed3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMoWFd_gLeCR4lOpmmSHqXoKizsZT2HNE2Ky9rWpBX235ulgidPw8x8b97wCLll8MAA5GMEAEQKCBRKFFSekYzx1KmqkuckA-CSIhfqklzFuE90gaLKyH09h28zzcHl03F0MR98Ph5Mb0Ju0yYN_BDyzsydi9fkwptDdDe_dUXeX5539SvdbNdv9dOG2mQwUc4VK5oGUQjFK2VAInrJlHdGWcuhLYVtuSrRGGaBlU3LK8DSi_RSI11brMjdcncMw9fs4qT3wxz6ZKmxEJxxYFAkii2UDUOMwXk9ho9PE46agT5lopdMdMpEnzLRMmlw0cTE9p0Lf5f_F_0A97dhug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2364140103</pqid></control><display><type>article</type><title>Curvature types of planar curves for gauges</title><source>Springer Nature</source><creator>Balestro, Vitor ; Martini, Horst ; Sakaki, Makoto</creator><creatorcontrib>Balestro, Vitor ; Martini, Horst ; Sakaki, Makoto</creatorcontrib><description>In this paper results from the differential geometry of curves are extended from normed planes to gauge planes which are obtained by neglecting the symmetry axiom. Based on the gauge analogue of the notion of Birkhoff orthogonality from Banach space theory, we study all curvature types of curves in gauge planes, thus generalizing their complete classification for normed planes. We show that (as in the subcase of normed planes) there are four such types, and we call them analogously Minkowski, normal, circular, and arc-length curvature. We study relations between them and extend, based on this, also the notions of evolutes and involutes to gauge planes.</description><identifier>ISSN: 0047-2468</identifier><identifier>EISSN: 1420-8997</identifier><identifier>DOI: 10.1007/s00022-020-0526-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Banach spaces ; Curvature ; Curves ; Differential geometry ; Gauges ; Geometry ; Involutes ; Mathematics ; Mathematics and Statistics ; Orthogonality ; Planes</subject><ispartof>Journal of geometry, 2020, Vol.111 (1), Article 12</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-44813bb22668498a0722f718fea8cc40d56cd4852aa1c015bd49025f6032b7ed3</citedby><cites>FETCH-LOGICAL-c246t-44813bb22668498a0722f718fea8cc40d56cd4852aa1c015bd49025f6032b7ed3</cites><orcidid>0000-0001-5672-0873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Balestro, Vitor</creatorcontrib><creatorcontrib>Martini, Horst</creatorcontrib><creatorcontrib>Sakaki, Makoto</creatorcontrib><title>Curvature types of planar curves for gauges</title><title>Journal of geometry</title><addtitle>J. Geom</addtitle><description>In this paper results from the differential geometry of curves are extended from normed planes to gauge planes which are obtained by neglecting the symmetry axiom. Based on the gauge analogue of the notion of Birkhoff orthogonality from Banach space theory, we study all curvature types of curves in gauge planes, thus generalizing their complete classification for normed planes. We show that (as in the subcase of normed planes) there are four such types, and we call them analogously Minkowski, normal, circular, and arc-length curvature. We study relations between them and extend, based on this, also the notions of evolutes and involutes to gauge planes.</description><subject>Banach spaces</subject><subject>Curvature</subject><subject>Curves</subject><subject>Differential geometry</subject><subject>Gauges</subject><subject>Geometry</subject><subject>Involutes</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orthogonality</subject><subject>Planes</subject><issn>0047-2468</issn><issn>1420-8997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMoWFd_gLeCR4lOpmmSHqXoKizsZT2HNE2Ky9rWpBX235ulgidPw8x8b97wCLll8MAA5GMEAEQKCBRKFFSekYzx1KmqkuckA-CSIhfqklzFuE90gaLKyH09h28zzcHl03F0MR98Ph5Mb0Ju0yYN_BDyzsydi9fkwptDdDe_dUXeX5539SvdbNdv9dOG2mQwUc4VK5oGUQjFK2VAInrJlHdGWcuhLYVtuSrRGGaBlU3LK8DSi_RSI11brMjdcncMw9fs4qT3wxz6ZKmxEJxxYFAkii2UDUOMwXk9ho9PE46agT5lopdMdMpEnzLRMmlw0cTE9p0Lf5f_F_0A97dhug</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Balestro, Vitor</creator><creator>Martini, Horst</creator><creator>Sakaki, Makoto</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5672-0873</orcidid></search><sort><creationdate>2020</creationdate><title>Curvature types of planar curves for gauges</title><author>Balestro, Vitor ; Martini, Horst ; Sakaki, Makoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-44813bb22668498a0722f718fea8cc40d56cd4852aa1c015bd49025f6032b7ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Banach spaces</topic><topic>Curvature</topic><topic>Curves</topic><topic>Differential geometry</topic><topic>Gauges</topic><topic>Geometry</topic><topic>Involutes</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orthogonality</topic><topic>Planes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balestro, Vitor</creatorcontrib><creatorcontrib>Martini, Horst</creatorcontrib><creatorcontrib>Sakaki, Makoto</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balestro, Vitor</au><au>Martini, Horst</au><au>Sakaki, Makoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvature types of planar curves for gauges</atitle><jtitle>Journal of geometry</jtitle><stitle>J. Geom</stitle><date>2020</date><risdate>2020</risdate><volume>111</volume><issue>1</issue><artnum>12</artnum><issn>0047-2468</issn><eissn>1420-8997</eissn><abstract>In this paper results from the differential geometry of curves are extended from normed planes to gauge planes which are obtained by neglecting the symmetry axiom. Based on the gauge analogue of the notion of Birkhoff orthogonality from Banach space theory, we study all curvature types of curves in gauge planes, thus generalizing their complete classification for normed planes. We show that (as in the subcase of normed planes) there are four such types, and we call them analogously Minkowski, normal, circular, and arc-length curvature. We study relations between them and extend, based on this, also the notions of evolutes and involutes to gauge planes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00022-020-0526-7</doi><orcidid>https://orcid.org/0000-0001-5672-0873</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0047-2468
ispartof Journal of geometry, 2020, Vol.111 (1), Article 12
issn 0047-2468
1420-8997
language eng
recordid cdi_proquest_journals_2364140103
source Springer Nature
subjects Banach spaces
Curvature
Curves
Differential geometry
Gauges
Geometry
Involutes
Mathematics
Mathematics and Statistics
Orthogonality
Planes
title Curvature types of planar curves for gauges
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvature%20types%20of%20planar%20curves%20for%20gauges&rft.jtitle=Journal%20of%20geometry&rft.au=Balestro,%20Vitor&rft.date=2020&rft.volume=111&rft.issue=1&rft.artnum=12&rft.issn=0047-2468&rft.eissn=1420-8997&rft_id=info:doi/10.1007/s00022-020-0526-7&rft_dat=%3Cproquest_cross%3E2364140103%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-44813bb22668498a0722f718fea8cc40d56cd4852aa1c015bd49025f6032b7ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2364140103&rft_id=info:pmid/&rfr_iscdi=true