Loading…
Curvature types of planar curves for gauges
In this paper results from the differential geometry of curves are extended from normed planes to gauge planes which are obtained by neglecting the symmetry axiom. Based on the gauge analogue of the notion of Birkhoff orthogonality from Banach space theory, we study all curvature types of curves in...
Saved in:
Published in: | Journal of geometry 2020, Vol.111 (1), Article 12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c246t-44813bb22668498a0722f718fea8cc40d56cd4852aa1c015bd49025f6032b7ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-44813bb22668498a0722f718fea8cc40d56cd4852aa1c015bd49025f6032b7ed3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Journal of geometry |
container_volume | 111 |
creator | Balestro, Vitor Martini, Horst Sakaki, Makoto |
description | In this paper results from the differential geometry of curves are extended from normed planes to gauge planes which are obtained by neglecting the symmetry axiom. Based on the gauge analogue of the notion of Birkhoff orthogonality from Banach space theory, we study all curvature types of curves in gauge planes, thus generalizing their complete classification for normed planes. We show that (as in the subcase of normed planes) there are four such types, and we call them analogously Minkowski, normal, circular, and arc-length curvature. We study relations between them and extend, based on this, also the notions of evolutes and involutes to gauge planes. |
doi_str_mv | 10.1007/s00022-020-0526-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2364140103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2364140103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-44813bb22668498a0722f718fea8cc40d56cd4852aa1c015bd49025f6032b7ed3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMoWFd_gLeCR4lOpmmSHqXoKizsZT2HNE2Ky9rWpBX235ulgidPw8x8b97wCLll8MAA5GMEAEQKCBRKFFSekYzx1KmqkuckA-CSIhfqklzFuE90gaLKyH09h28zzcHl03F0MR98Ph5Mb0Ju0yYN_BDyzsydi9fkwptDdDe_dUXeX5539SvdbNdv9dOG2mQwUc4VK5oGUQjFK2VAInrJlHdGWcuhLYVtuSrRGGaBlU3LK8DSi_RSI11brMjdcncMw9fs4qT3wxz6ZKmxEJxxYFAkii2UDUOMwXk9ho9PE46agT5lopdMdMpEnzLRMmlw0cTE9p0Lf5f_F_0A97dhug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2364140103</pqid></control><display><type>article</type><title>Curvature types of planar curves for gauges</title><source>Springer Nature</source><creator>Balestro, Vitor ; Martini, Horst ; Sakaki, Makoto</creator><creatorcontrib>Balestro, Vitor ; Martini, Horst ; Sakaki, Makoto</creatorcontrib><description>In this paper results from the differential geometry of curves are extended from normed planes to gauge planes which are obtained by neglecting the symmetry axiom. Based on the gauge analogue of the notion of Birkhoff orthogonality from Banach space theory, we study all curvature types of curves in gauge planes, thus generalizing their complete classification for normed planes. We show that (as in the subcase of normed planes) there are four such types, and we call them analogously Minkowski, normal, circular, and arc-length curvature. We study relations between them and extend, based on this, also the notions of evolutes and involutes to gauge planes.</description><identifier>ISSN: 0047-2468</identifier><identifier>EISSN: 1420-8997</identifier><identifier>DOI: 10.1007/s00022-020-0526-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Banach spaces ; Curvature ; Curves ; Differential geometry ; Gauges ; Geometry ; Involutes ; Mathematics ; Mathematics and Statistics ; Orthogonality ; Planes</subject><ispartof>Journal of geometry, 2020, Vol.111 (1), Article 12</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-44813bb22668498a0722f718fea8cc40d56cd4852aa1c015bd49025f6032b7ed3</citedby><cites>FETCH-LOGICAL-c246t-44813bb22668498a0722f718fea8cc40d56cd4852aa1c015bd49025f6032b7ed3</cites><orcidid>0000-0001-5672-0873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Balestro, Vitor</creatorcontrib><creatorcontrib>Martini, Horst</creatorcontrib><creatorcontrib>Sakaki, Makoto</creatorcontrib><title>Curvature types of planar curves for gauges</title><title>Journal of geometry</title><addtitle>J. Geom</addtitle><description>In this paper results from the differential geometry of curves are extended from normed planes to gauge planes which are obtained by neglecting the symmetry axiom. Based on the gauge analogue of the notion of Birkhoff orthogonality from Banach space theory, we study all curvature types of curves in gauge planes, thus generalizing their complete classification for normed planes. We show that (as in the subcase of normed planes) there are four such types, and we call them analogously Minkowski, normal, circular, and arc-length curvature. We study relations between them and extend, based on this, also the notions of evolutes and involutes to gauge planes.</description><subject>Banach spaces</subject><subject>Curvature</subject><subject>Curves</subject><subject>Differential geometry</subject><subject>Gauges</subject><subject>Geometry</subject><subject>Involutes</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orthogonality</subject><subject>Planes</subject><issn>0047-2468</issn><issn>1420-8997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMoWFd_gLeCR4lOpmmSHqXoKizsZT2HNE2Ky9rWpBX235ulgidPw8x8b97wCLll8MAA5GMEAEQKCBRKFFSekYzx1KmqkuckA-CSIhfqklzFuE90gaLKyH09h28zzcHl03F0MR98Ph5Mb0Ju0yYN_BDyzsydi9fkwptDdDe_dUXeX5539SvdbNdv9dOG2mQwUc4VK5oGUQjFK2VAInrJlHdGWcuhLYVtuSrRGGaBlU3LK8DSi_RSI11brMjdcncMw9fs4qT3wxz6ZKmxEJxxYFAkii2UDUOMwXk9ho9PE46agT5lopdMdMpEnzLRMmlw0cTE9p0Lf5f_F_0A97dhug</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Balestro, Vitor</creator><creator>Martini, Horst</creator><creator>Sakaki, Makoto</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5672-0873</orcidid></search><sort><creationdate>2020</creationdate><title>Curvature types of planar curves for gauges</title><author>Balestro, Vitor ; Martini, Horst ; Sakaki, Makoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-44813bb22668498a0722f718fea8cc40d56cd4852aa1c015bd49025f6032b7ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Banach spaces</topic><topic>Curvature</topic><topic>Curves</topic><topic>Differential geometry</topic><topic>Gauges</topic><topic>Geometry</topic><topic>Involutes</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orthogonality</topic><topic>Planes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balestro, Vitor</creatorcontrib><creatorcontrib>Martini, Horst</creatorcontrib><creatorcontrib>Sakaki, Makoto</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balestro, Vitor</au><au>Martini, Horst</au><au>Sakaki, Makoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvature types of planar curves for gauges</atitle><jtitle>Journal of geometry</jtitle><stitle>J. Geom</stitle><date>2020</date><risdate>2020</risdate><volume>111</volume><issue>1</issue><artnum>12</artnum><issn>0047-2468</issn><eissn>1420-8997</eissn><abstract>In this paper results from the differential geometry of curves are extended from normed planes to gauge planes which are obtained by neglecting the symmetry axiom. Based on the gauge analogue of the notion of Birkhoff orthogonality from Banach space theory, we study all curvature types of curves in gauge planes, thus generalizing their complete classification for normed planes. We show that (as in the subcase of normed planes) there are four such types, and we call them analogously Minkowski, normal, circular, and arc-length curvature. We study relations between them and extend, based on this, also the notions of evolutes and involutes to gauge planes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00022-020-0526-7</doi><orcidid>https://orcid.org/0000-0001-5672-0873</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-2468 |
ispartof | Journal of geometry, 2020, Vol.111 (1), Article 12 |
issn | 0047-2468 1420-8997 |
language | eng |
recordid | cdi_proquest_journals_2364140103 |
source | Springer Nature |
subjects | Banach spaces Curvature Curves Differential geometry Gauges Geometry Involutes Mathematics Mathematics and Statistics Orthogonality Planes |
title | Curvature types of planar curves for gauges |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvature%20types%20of%20planar%20curves%20for%20gauges&rft.jtitle=Journal%20of%20geometry&rft.au=Balestro,%20Vitor&rft.date=2020&rft.volume=111&rft.issue=1&rft.artnum=12&rft.issn=0047-2468&rft.eissn=1420-8997&rft_id=info:doi/10.1007/s00022-020-0526-7&rft_dat=%3Cproquest_cross%3E2364140103%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-44813bb22668498a0722f718fea8cc40d56cd4852aa1c015bd49025f6032b7ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2364140103&rft_id=info:pmid/&rfr_iscdi=true |