Loading…
Emergence of Competing Stripe Phase near the Mott Transition in Ti-doped Bilayer Calcium Ruthenates
We report the nanoscale imaging of Ti-doped bilayer calcium ruthenates during the Mott metal-insulator transition by microwave impedance microscopy. Different from a typical first-order phase transition where coexistence of the two terminal phases takes place, a new metallic stripe phase oriented al...
Saved in:
Published in: | arXiv.org 2020-02 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the nanoscale imaging of Ti-doped bilayer calcium ruthenates during the Mott metal-insulator transition by microwave impedance microscopy. Different from a typical first-order phase transition where coexistence of the two terminal phases takes place, a new metallic stripe phase oriented along the in-plane crystalline axes emerges inside both the G-type antiferromagnetic insulating state and paramagnetic metallic state. The effect of this electronic state can be observed in macroscopic measurements, allowing us to construct a phase diagram that takes into account the energetically competing phases. Our work provides a model approach to correlate the macroscopic properties and mesoscopic phase separation in complex oxide materials. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2002.10489 |