Loading…

Turbulence in Magnetized Pair Plasmas

Alfvénic-type turbulence in strongly magnetized, low-beta pair plasmas is investigated. A coupled set of equations for the evolution of the magnetic and flow potentials are derived, covering both fluid and kinetic scales. In the fluid (magnetohydrodynamic) range those equations are the same as for e...

Full description

Saved in:
Bibliographic Details
Published in:Astrophysical journal. Letters 2018-10, Vol.866 (1), p.L14
Main Authors: Loureiro, Nuno F., Boldyrev, Stanislav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alfvénic-type turbulence in strongly magnetized, low-beta pair plasmas is investigated. A coupled set of equations for the evolution of the magnetic and flow potentials are derived, covering both fluid and kinetic scales. In the fluid (magnetohydrodynamic) range those equations are the same as for electron-ion plasmas, so turbulence at those scales is expected to be of the Alfvénic nature, exhibiting critical balance, dynamic alignment, and transition to a tearing-mediated regime at small scales. The critical scale at which a transition to a tearing-mediated range occurs is derived, and the spectral slope in that range is predicted to be (or , depending on details of the reconnecting configuration assumed). At scales below the electron (and positron) skin depth, it is argued that turbulence is dictated by a cascade of the inertial Alfvén wave, which we show to result in the magnetic energy spectrum .
ISSN:2041-8205
2041-8213
2041-8213
DOI:10.3847/2041-8213/aae483