Loading…
MOA-2015-BLG-337: A Planetary System with a Low-mass Brown Dwarf/Planetary Boundary Host, or a Brown Dwarf Binary
We report on the discovery and analysis of the short-timescale binary-lens microlensing event, MOA-2015-BLG-337. The lens system could be a planetary system with a very low-mass host, around the brown dwarf (BD)/planetary-mass boundary, or a BD binary. We found two competing models that explain the...
Saved in:
Published in: | The Astronomical journal 2018-09, Vol.156 (3), p.136 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on the discovery and analysis of the short-timescale binary-lens microlensing event, MOA-2015-BLG-337. The lens system could be a planetary system with a very low-mass host, around the brown dwarf (BD)/planetary-mass boundary, or a BD binary. We found two competing models that explain the observed light curves with companion/host mass ratios of q ∼ 0.01 and ∼0.17, respectively. A significant finite source effect in the best-fit planetary model (q ∼ 0.01) reveals a small angular Einstein radius of θE 0.03 mas, which favors a low-mass lens. We obtain the posterior probability distribution of the lens properties from a Bayesian analysis. The results for the planetary models strongly depend on a power-law index in planetary-mass regime, pl, in the assumed mass function. In summary, there are two solutions of the lens system: (1) a BD/planetary-mass boundary object orbited by a super-Neptune (the planetary model with pl = 0.49) and (2) a BD binary (the binary model). If the planetary models are correct, this system can be one of a new class of planetary system, having a low host mass and also a planetary-mass ratio (q < 0.03) between the companion and its host. The discovery of the event is important for the study of planetary formation in very low-mass objects. In addition, it is important to consider all viable solutions in these kinds of ambiguous events in order for the future comprehensive statistical analyses of planetary/binary microlensing events. |
---|---|
ISSN: | 0004-6256 1538-3881 |
DOI: | 10.3847/1538-3881/aad5ee |