Loading…
Aluminium-26 from Massive Binary Stars. I. Nonrotating Models
Aluminium-26 is a short-lived radionuclide with a half-life of 0.72 Myr, which is observed today in the Galaxy via γ -ray spectroscopy and is inferred to have been present in the early solar system via analysis of meteorites. Massive stars are considered the main contributors of 26 Al. Although most...
Saved in:
Published in: | The Astrophysical journal 2019-10, Vol.884 (1), p.38 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c313t-e239cac610e4f82647f0a6c3dc9a59ae8a2290ddab8916b6608230b63425c2353 |
---|---|
cites | cdi_FETCH-LOGICAL-c313t-e239cac610e4f82647f0a6c3dc9a59ae8a2290ddab8916b6608230b63425c2353 |
container_end_page | |
container_issue | 1 |
container_start_page | 38 |
container_title | The Astrophysical journal |
container_volume | 884 |
creator | Brinkman, H. E. Doherty, C. L. Pols, O. R. Li, E. T. Côté, B. Lugaro, M. |
description | Aluminium-26 is a short-lived radionuclide with a half-life of 0.72 Myr, which is observed today in the Galaxy via
γ
-ray spectroscopy and is inferred to have been present in the early solar system via analysis of meteorites. Massive stars are considered the main contributors of
26
Al. Although most massive stars are found in binary systems, the effect, however, of binary interactions on the
26
Al yields has not been investigated since Braun & Langer. Here we aim to fill this gap. We have used the MESA stellar evolution code to compute massive (10
M
⊙
≤
M
≤ 80
M
⊙
) nonrotating single and binary stars of solar metallicity (
Z
= 0.014). We computed the wind yields for the single stars and for the binary systems where mass transfer plays a major role. Depending on the initial mass of the primary star and orbital period, the
26
Al yield can either increase or decrease in a binary system. For binary systems with primary masses up to ∼35–40
M
⊙
, the yield can increase significantly, especially at the lower mass end, while above ∼45
M
⊙
the yield becomes similar to the single-star yield or even decreases. Our preliminary results show that compared to supernova explosions, the contribution of mass loss in binary systems to the total
26
Al abundance produced by a stellar population is minor. On the other hand, if massive star mass loss is the origin of
26
Al in the early solar system, our results will have significant implications for the identification of the potential stellar, or stellar population, source. |
doi_str_mv | 10.3847/1538-4357/ab40ae |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2365734232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365734232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-e239cac610e4f82647f0a6c3dc9a59ae8a2290ddab8916b6608230b63425c2353</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMoWFfvHgOeu5tm0rQ5eFgXPxZ29aCCtzBNU-nSNmvSCv57Wyqehhke5uV9CLlO2BJyka2SFPJYQJqtsBAM7QmJ_k-nJGKMiVhC9nFOLkI4TCtXKiK362Zo664e2phLWnnX0j2GUH9beld36H_oa48-LOl2SZ9d512Pfd190r0rbRMuyVmFTbBXf3NB3h_u3zZP8e7lcbtZ72IDCfSx5aAMGpkwK6qcS5FVDKWB0ihMFdocOVesLLHIVSILKVnOgRUSBE8NhxQW5Gb-e_Tua7Ch1wc3-G6M1Bxkmo0g8JFiM2W8C8HbSh993Y4ddML0JElPRvRkRM-S4BftB1ia</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365734232</pqid></control><display><type>article</type><title>Aluminium-26 from Massive Binary Stars. I. Nonrotating Models</title><source>EZB Free E-Journals</source><creator>Brinkman, H. E. ; Doherty, C. L. ; Pols, O. R. ; Li, E. T. ; Côté, B. ; Lugaro, M.</creator><creatorcontrib>Brinkman, H. E. ; Doherty, C. L. ; Pols, O. R. ; Li, E. T. ; Côté, B. ; Lugaro, M.</creatorcontrib><description>Aluminium-26 is a short-lived radionuclide with a half-life of 0.72 Myr, which is observed today in the Galaxy via
γ
-ray spectroscopy and is inferred to have been present in the early solar system via analysis of meteorites. Massive stars are considered the main contributors of
26
Al. Although most massive stars are found in binary systems, the effect, however, of binary interactions on the
26
Al yields has not been investigated since Braun & Langer. Here we aim to fill this gap. We have used the MESA stellar evolution code to compute massive (10
M
⊙
≤
M
≤ 80
M
⊙
) nonrotating single and binary stars of solar metallicity (
Z
= 0.014). We computed the wind yields for the single stars and for the binary systems where mass transfer plays a major role. Depending on the initial mass of the primary star and orbital period, the
26
Al yield can either increase or decrease in a binary system. For binary systems with primary masses up to ∼35–40
M
⊙
, the yield can increase significantly, especially at the lower mass end, while above ∼45
M
⊙
the yield becomes similar to the single-star yield or even decreases. Our preliminary results show that compared to supernova explosions, the contribution of mass loss in binary systems to the total
26
Al abundance produced by a stellar population is minor. On the other hand, if massive star mass loss is the origin of
26
Al in the early solar system, our results will have significant implications for the identification of the potential stellar, or stellar population, source.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab40ae</identifier><language>eng</language><publisher>Philadelphia: IOP Publishing</publisher><subject>Aluminum ; Astrophysics ; Binary stars ; Binary system ; Explosions ; Galaxies ; Gamma spectroscopy ; Mass transfer ; Massive stars ; Metallicity ; Meteorites ; Orbits ; Radioisotopes ; Solar system ; Space telescopes ; Spectroscopy ; Stars ; Stellar evolution ; Stellar winds ; Supernova</subject><ispartof>The Astrophysical journal, 2019-10, Vol.884 (1), p.38</ispartof><rights>Copyright IOP Publishing Oct 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-e239cac610e4f82647f0a6c3dc9a59ae8a2290ddab8916b6608230b63425c2353</citedby><cites>FETCH-LOGICAL-c313t-e239cac610e4f82647f0a6c3dc9a59ae8a2290ddab8916b6608230b63425c2353</cites><orcidid>0000-0002-9986-8816 ; 0000-0002-6972-3958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Brinkman, H. E.</creatorcontrib><creatorcontrib>Doherty, C. L.</creatorcontrib><creatorcontrib>Pols, O. R.</creatorcontrib><creatorcontrib>Li, E. T.</creatorcontrib><creatorcontrib>Côté, B.</creatorcontrib><creatorcontrib>Lugaro, M.</creatorcontrib><title>Aluminium-26 from Massive Binary Stars. I. Nonrotating Models</title><title>The Astrophysical journal</title><description>Aluminium-26 is a short-lived radionuclide with a half-life of 0.72 Myr, which is observed today in the Galaxy via
γ
-ray spectroscopy and is inferred to have been present in the early solar system via analysis of meteorites. Massive stars are considered the main contributors of
26
Al. Although most massive stars are found in binary systems, the effect, however, of binary interactions on the
26
Al yields has not been investigated since Braun & Langer. Here we aim to fill this gap. We have used the MESA stellar evolution code to compute massive (10
M
⊙
≤
M
≤ 80
M
⊙
) nonrotating single and binary stars of solar metallicity (
Z
= 0.014). We computed the wind yields for the single stars and for the binary systems where mass transfer plays a major role. Depending on the initial mass of the primary star and orbital period, the
26
Al yield can either increase or decrease in a binary system. For binary systems with primary masses up to ∼35–40
M
⊙
, the yield can increase significantly, especially at the lower mass end, while above ∼45
M
⊙
the yield becomes similar to the single-star yield or even decreases. Our preliminary results show that compared to supernova explosions, the contribution of mass loss in binary systems to the total
26
Al abundance produced by a stellar population is minor. On the other hand, if massive star mass loss is the origin of
26
Al in the early solar system, our results will have significant implications for the identification of the potential stellar, or stellar population, source.</description><subject>Aluminum</subject><subject>Astrophysics</subject><subject>Binary stars</subject><subject>Binary system</subject><subject>Explosions</subject><subject>Galaxies</subject><subject>Gamma spectroscopy</subject><subject>Mass transfer</subject><subject>Massive stars</subject><subject>Metallicity</subject><subject>Meteorites</subject><subject>Orbits</subject><subject>Radioisotopes</subject><subject>Solar system</subject><subject>Space telescopes</subject><subject>Spectroscopy</subject><subject>Stars</subject><subject>Stellar evolution</subject><subject>Stellar winds</subject><subject>Supernova</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMoWFfvHgOeu5tm0rQ5eFgXPxZ29aCCtzBNU-nSNmvSCv57Wyqehhke5uV9CLlO2BJyka2SFPJYQJqtsBAM7QmJ_k-nJGKMiVhC9nFOLkI4TCtXKiK362Zo664e2phLWnnX0j2GUH9beld36H_oa48-LOl2SZ9d512Pfd190r0rbRMuyVmFTbBXf3NB3h_u3zZP8e7lcbtZ72IDCfSx5aAMGpkwK6qcS5FVDKWB0ihMFdocOVesLLHIVSILKVnOgRUSBE8NhxQW5Gb-e_Tua7Ch1wc3-G6M1Bxkmo0g8JFiM2W8C8HbSh993Y4ddML0JElPRvRkRM-S4BftB1ia</recordid><startdate>20191010</startdate><enddate>20191010</enddate><creator>Brinkman, H. E.</creator><creator>Doherty, C. L.</creator><creator>Pols, O. R.</creator><creator>Li, E. T.</creator><creator>Côté, B.</creator><creator>Lugaro, M.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9986-8816</orcidid><orcidid>https://orcid.org/0000-0002-6972-3958</orcidid></search><sort><creationdate>20191010</creationdate><title>Aluminium-26 from Massive Binary Stars. I. Nonrotating Models</title><author>Brinkman, H. E. ; Doherty, C. L. ; Pols, O. R. ; Li, E. T. ; Côté, B. ; Lugaro, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-e239cac610e4f82647f0a6c3dc9a59ae8a2290ddab8916b6608230b63425c2353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Astrophysics</topic><topic>Binary stars</topic><topic>Binary system</topic><topic>Explosions</topic><topic>Galaxies</topic><topic>Gamma spectroscopy</topic><topic>Mass transfer</topic><topic>Massive stars</topic><topic>Metallicity</topic><topic>Meteorites</topic><topic>Orbits</topic><topic>Radioisotopes</topic><topic>Solar system</topic><topic>Space telescopes</topic><topic>Spectroscopy</topic><topic>Stars</topic><topic>Stellar evolution</topic><topic>Stellar winds</topic><topic>Supernova</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brinkman, H. E.</creatorcontrib><creatorcontrib>Doherty, C. L.</creatorcontrib><creatorcontrib>Pols, O. R.</creatorcontrib><creatorcontrib>Li, E. T.</creatorcontrib><creatorcontrib>Côté, B.</creatorcontrib><creatorcontrib>Lugaro, M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brinkman, H. E.</au><au>Doherty, C. L.</au><au>Pols, O. R.</au><au>Li, E. T.</au><au>Côté, B.</au><au>Lugaro, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aluminium-26 from Massive Binary Stars. I. Nonrotating Models</atitle><jtitle>The Astrophysical journal</jtitle><date>2019-10-10</date><risdate>2019</risdate><volume>884</volume><issue>1</issue><spage>38</spage><pages>38-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Aluminium-26 is a short-lived radionuclide with a half-life of 0.72 Myr, which is observed today in the Galaxy via
γ
-ray spectroscopy and is inferred to have been present in the early solar system via analysis of meteorites. Massive stars are considered the main contributors of
26
Al. Although most massive stars are found in binary systems, the effect, however, of binary interactions on the
26
Al yields has not been investigated since Braun & Langer. Here we aim to fill this gap. We have used the MESA stellar evolution code to compute massive (10
M
⊙
≤
M
≤ 80
M
⊙
) nonrotating single and binary stars of solar metallicity (
Z
= 0.014). We computed the wind yields for the single stars and for the binary systems where mass transfer plays a major role. Depending on the initial mass of the primary star and orbital period, the
26
Al yield can either increase or decrease in a binary system. For binary systems with primary masses up to ∼35–40
M
⊙
, the yield can increase significantly, especially at the lower mass end, while above ∼45
M
⊙
the yield becomes similar to the single-star yield or even decreases. Our preliminary results show that compared to supernova explosions, the contribution of mass loss in binary systems to the total
26
Al abundance produced by a stellar population is minor. On the other hand, if massive star mass loss is the origin of
26
Al in the early solar system, our results will have significant implications for the identification of the potential stellar, or stellar population, source.</abstract><cop>Philadelphia</cop><pub>IOP Publishing</pub><doi>10.3847/1538-4357/ab40ae</doi><orcidid>https://orcid.org/0000-0002-9986-8816</orcidid><orcidid>https://orcid.org/0000-0002-6972-3958</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2019-10, Vol.884 (1), p.38 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2365734232 |
source | EZB Free E-Journals |
subjects | Aluminum Astrophysics Binary stars Binary system Explosions Galaxies Gamma spectroscopy Mass transfer Massive stars Metallicity Meteorites Orbits Radioisotopes Solar system Space telescopes Spectroscopy Stars Stellar evolution Stellar winds Supernova |
title | Aluminium-26 from Massive Binary Stars. I. Nonrotating Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aluminium-26%20from%20Massive%20Binary%20Stars.%20I.%20Nonrotating%20Models&rft.jtitle=The%20Astrophysical%20journal&rft.au=Brinkman,%20H.%20E.&rft.date=2019-10-10&rft.volume=884&rft.issue=1&rft.spage=38&rft.pages=38-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab40ae&rft_dat=%3Cproquest_cross%3E2365734232%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-e239cac610e4f82647f0a6c3dc9a59ae8a2290ddab8916b6608230b63425c2353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365734232&rft_id=info:pmid/&rfr_iscdi=true |