Loading…

Aluminium-26 from Massive Binary Stars. I. Nonrotating Models

Aluminium-26 is a short-lived radionuclide with a half-life of 0.72 Myr, which is observed today in the Galaxy via γ -ray spectroscopy and is inferred to have been present in the early solar system via analysis of meteorites. Massive stars are considered the main contributors of 26 Al. Although most...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2019-10, Vol.884 (1), p.38
Main Authors: Brinkman, H. E., Doherty, C. L., Pols, O. R., Li, E. T., Côté, B., Lugaro, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-e239cac610e4f82647f0a6c3dc9a59ae8a2290ddab8916b6608230b63425c2353
cites cdi_FETCH-LOGICAL-c313t-e239cac610e4f82647f0a6c3dc9a59ae8a2290ddab8916b6608230b63425c2353
container_end_page
container_issue 1
container_start_page 38
container_title The Astrophysical journal
container_volume 884
creator Brinkman, H. E.
Doherty, C. L.
Pols, O. R.
Li, E. T.
Côté, B.
Lugaro, M.
description Aluminium-26 is a short-lived radionuclide with a half-life of 0.72 Myr, which is observed today in the Galaxy via γ -ray spectroscopy and is inferred to have been present in the early solar system via analysis of meteorites. Massive stars are considered the main contributors of 26 Al. Although most massive stars are found in binary systems, the effect, however, of binary interactions on the 26 Al yields has not been investigated since Braun & Langer. Here we aim to fill this gap. We have used the MESA stellar evolution code to compute massive (10 M ⊙ ≤ M ≤ 80 M ⊙ ) nonrotating single and binary stars of solar metallicity ( Z  = 0.014). We computed the wind yields for the single stars and for the binary systems where mass transfer plays a major role. Depending on the initial mass of the primary star and orbital period, the 26 Al yield can either increase or decrease in a binary system. For binary systems with primary masses up to ∼35–40 M ⊙ , the yield can increase significantly, especially at the lower mass end, while above ∼45 M ⊙ the yield becomes similar to the single-star yield or even decreases. Our preliminary results show that compared to supernova explosions, the contribution of mass loss in binary systems to the total 26 Al abundance produced by a stellar population is minor. On the other hand, if massive star mass loss is the origin of 26 Al in the early solar system, our results will have significant implications for the identification of the potential stellar, or stellar population, source.
doi_str_mv 10.3847/1538-4357/ab40ae
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2365734232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365734232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-e239cac610e4f82647f0a6c3dc9a59ae8a2290ddab8916b6608230b63425c2353</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMoWFfvHgOeu5tm0rQ5eFgXPxZ29aCCtzBNU-nSNmvSCv57Wyqehhke5uV9CLlO2BJyka2SFPJYQJqtsBAM7QmJ_k-nJGKMiVhC9nFOLkI4TCtXKiK362Zo664e2phLWnnX0j2GUH9beld36H_oa48-LOl2SZ9d512Pfd190r0rbRMuyVmFTbBXf3NB3h_u3zZP8e7lcbtZ72IDCfSx5aAMGpkwK6qcS5FVDKWB0ihMFdocOVesLLHIVSILKVnOgRUSBE8NhxQW5Gb-e_Tua7Ch1wc3-G6M1Bxkmo0g8JFiM2W8C8HbSh993Y4ddML0JElPRvRkRM-S4BftB1ia</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365734232</pqid></control><display><type>article</type><title>Aluminium-26 from Massive Binary Stars. I. Nonrotating Models</title><source>EZB Free E-Journals</source><creator>Brinkman, H. E. ; Doherty, C. L. ; Pols, O. R. ; Li, E. T. ; Côté, B. ; Lugaro, M.</creator><creatorcontrib>Brinkman, H. E. ; Doherty, C. L. ; Pols, O. R. ; Li, E. T. ; Côté, B. ; Lugaro, M.</creatorcontrib><description>Aluminium-26 is a short-lived radionuclide with a half-life of 0.72 Myr, which is observed today in the Galaxy via γ -ray spectroscopy and is inferred to have been present in the early solar system via analysis of meteorites. Massive stars are considered the main contributors of 26 Al. Although most massive stars are found in binary systems, the effect, however, of binary interactions on the 26 Al yields has not been investigated since Braun &amp; Langer. Here we aim to fill this gap. We have used the MESA stellar evolution code to compute massive (10 M ⊙ ≤ M ≤ 80 M ⊙ ) nonrotating single and binary stars of solar metallicity ( Z  = 0.014). We computed the wind yields for the single stars and for the binary systems where mass transfer plays a major role. Depending on the initial mass of the primary star and orbital period, the 26 Al yield can either increase or decrease in a binary system. For binary systems with primary masses up to ∼35–40 M ⊙ , the yield can increase significantly, especially at the lower mass end, while above ∼45 M ⊙ the yield becomes similar to the single-star yield or even decreases. Our preliminary results show that compared to supernova explosions, the contribution of mass loss in binary systems to the total 26 Al abundance produced by a stellar population is minor. On the other hand, if massive star mass loss is the origin of 26 Al in the early solar system, our results will have significant implications for the identification of the potential stellar, or stellar population, source.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab40ae</identifier><language>eng</language><publisher>Philadelphia: IOP Publishing</publisher><subject>Aluminum ; Astrophysics ; Binary stars ; Binary system ; Explosions ; Galaxies ; Gamma spectroscopy ; Mass transfer ; Massive stars ; Metallicity ; Meteorites ; Orbits ; Radioisotopes ; Solar system ; Space telescopes ; Spectroscopy ; Stars ; Stellar evolution ; Stellar winds ; Supernova</subject><ispartof>The Astrophysical journal, 2019-10, Vol.884 (1), p.38</ispartof><rights>Copyright IOP Publishing Oct 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-e239cac610e4f82647f0a6c3dc9a59ae8a2290ddab8916b6608230b63425c2353</citedby><cites>FETCH-LOGICAL-c313t-e239cac610e4f82647f0a6c3dc9a59ae8a2290ddab8916b6608230b63425c2353</cites><orcidid>0000-0002-9986-8816 ; 0000-0002-6972-3958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Brinkman, H. E.</creatorcontrib><creatorcontrib>Doherty, C. L.</creatorcontrib><creatorcontrib>Pols, O. R.</creatorcontrib><creatorcontrib>Li, E. T.</creatorcontrib><creatorcontrib>Côté, B.</creatorcontrib><creatorcontrib>Lugaro, M.</creatorcontrib><title>Aluminium-26 from Massive Binary Stars. I. Nonrotating Models</title><title>The Astrophysical journal</title><description>Aluminium-26 is a short-lived radionuclide with a half-life of 0.72 Myr, which is observed today in the Galaxy via γ -ray spectroscopy and is inferred to have been present in the early solar system via analysis of meteorites. Massive stars are considered the main contributors of 26 Al. Although most massive stars are found in binary systems, the effect, however, of binary interactions on the 26 Al yields has not been investigated since Braun &amp; Langer. Here we aim to fill this gap. We have used the MESA stellar evolution code to compute massive (10 M ⊙ ≤ M ≤ 80 M ⊙ ) nonrotating single and binary stars of solar metallicity ( Z  = 0.014). We computed the wind yields for the single stars and for the binary systems where mass transfer plays a major role. Depending on the initial mass of the primary star and orbital period, the 26 Al yield can either increase or decrease in a binary system. For binary systems with primary masses up to ∼35–40 M ⊙ , the yield can increase significantly, especially at the lower mass end, while above ∼45 M ⊙ the yield becomes similar to the single-star yield or even decreases. Our preliminary results show that compared to supernova explosions, the contribution of mass loss in binary systems to the total 26 Al abundance produced by a stellar population is minor. On the other hand, if massive star mass loss is the origin of 26 Al in the early solar system, our results will have significant implications for the identification of the potential stellar, or stellar population, source.</description><subject>Aluminum</subject><subject>Astrophysics</subject><subject>Binary stars</subject><subject>Binary system</subject><subject>Explosions</subject><subject>Galaxies</subject><subject>Gamma spectroscopy</subject><subject>Mass transfer</subject><subject>Massive stars</subject><subject>Metallicity</subject><subject>Meteorites</subject><subject>Orbits</subject><subject>Radioisotopes</subject><subject>Solar system</subject><subject>Space telescopes</subject><subject>Spectroscopy</subject><subject>Stars</subject><subject>Stellar evolution</subject><subject>Stellar winds</subject><subject>Supernova</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMoWFfvHgOeu5tm0rQ5eFgXPxZ29aCCtzBNU-nSNmvSCv57Wyqehhke5uV9CLlO2BJyka2SFPJYQJqtsBAM7QmJ_k-nJGKMiVhC9nFOLkI4TCtXKiK362Zo664e2phLWnnX0j2GUH9beld36H_oa48-LOl2SZ9d512Pfd190r0rbRMuyVmFTbBXf3NB3h_u3zZP8e7lcbtZ72IDCfSx5aAMGpkwK6qcS5FVDKWB0ihMFdocOVesLLHIVSILKVnOgRUSBE8NhxQW5Gb-e_Tua7Ch1wc3-G6M1Bxkmo0g8JFiM2W8C8HbSh993Y4ddML0JElPRvRkRM-S4BftB1ia</recordid><startdate>20191010</startdate><enddate>20191010</enddate><creator>Brinkman, H. E.</creator><creator>Doherty, C. L.</creator><creator>Pols, O. R.</creator><creator>Li, E. T.</creator><creator>Côté, B.</creator><creator>Lugaro, M.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9986-8816</orcidid><orcidid>https://orcid.org/0000-0002-6972-3958</orcidid></search><sort><creationdate>20191010</creationdate><title>Aluminium-26 from Massive Binary Stars. I. Nonrotating Models</title><author>Brinkman, H. E. ; Doherty, C. L. ; Pols, O. R. ; Li, E. T. ; Côté, B. ; Lugaro, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-e239cac610e4f82647f0a6c3dc9a59ae8a2290ddab8916b6608230b63425c2353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Astrophysics</topic><topic>Binary stars</topic><topic>Binary system</topic><topic>Explosions</topic><topic>Galaxies</topic><topic>Gamma spectroscopy</topic><topic>Mass transfer</topic><topic>Massive stars</topic><topic>Metallicity</topic><topic>Meteorites</topic><topic>Orbits</topic><topic>Radioisotopes</topic><topic>Solar system</topic><topic>Space telescopes</topic><topic>Spectroscopy</topic><topic>Stars</topic><topic>Stellar evolution</topic><topic>Stellar winds</topic><topic>Supernova</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brinkman, H. E.</creatorcontrib><creatorcontrib>Doherty, C. L.</creatorcontrib><creatorcontrib>Pols, O. R.</creatorcontrib><creatorcontrib>Li, E. T.</creatorcontrib><creatorcontrib>Côté, B.</creatorcontrib><creatorcontrib>Lugaro, M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brinkman, H. E.</au><au>Doherty, C. L.</au><au>Pols, O. R.</au><au>Li, E. T.</au><au>Côté, B.</au><au>Lugaro, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aluminium-26 from Massive Binary Stars. I. Nonrotating Models</atitle><jtitle>The Astrophysical journal</jtitle><date>2019-10-10</date><risdate>2019</risdate><volume>884</volume><issue>1</issue><spage>38</spage><pages>38-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Aluminium-26 is a short-lived radionuclide with a half-life of 0.72 Myr, which is observed today in the Galaxy via γ -ray spectroscopy and is inferred to have been present in the early solar system via analysis of meteorites. Massive stars are considered the main contributors of 26 Al. Although most massive stars are found in binary systems, the effect, however, of binary interactions on the 26 Al yields has not been investigated since Braun &amp; Langer. Here we aim to fill this gap. We have used the MESA stellar evolution code to compute massive (10 M ⊙ ≤ M ≤ 80 M ⊙ ) nonrotating single and binary stars of solar metallicity ( Z  = 0.014). We computed the wind yields for the single stars and for the binary systems where mass transfer plays a major role. Depending on the initial mass of the primary star and orbital period, the 26 Al yield can either increase or decrease in a binary system. For binary systems with primary masses up to ∼35–40 M ⊙ , the yield can increase significantly, especially at the lower mass end, while above ∼45 M ⊙ the yield becomes similar to the single-star yield or even decreases. Our preliminary results show that compared to supernova explosions, the contribution of mass loss in binary systems to the total 26 Al abundance produced by a stellar population is minor. On the other hand, if massive star mass loss is the origin of 26 Al in the early solar system, our results will have significant implications for the identification of the potential stellar, or stellar population, source.</abstract><cop>Philadelphia</cop><pub>IOP Publishing</pub><doi>10.3847/1538-4357/ab40ae</doi><orcidid>https://orcid.org/0000-0002-9986-8816</orcidid><orcidid>https://orcid.org/0000-0002-6972-3958</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2019-10, Vol.884 (1), p.38
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2365734232
source EZB Free E-Journals
subjects Aluminum
Astrophysics
Binary stars
Binary system
Explosions
Galaxies
Gamma spectroscopy
Mass transfer
Massive stars
Metallicity
Meteorites
Orbits
Radioisotopes
Solar system
Space telescopes
Spectroscopy
Stars
Stellar evolution
Stellar winds
Supernova
title Aluminium-26 from Massive Binary Stars. I. Nonrotating Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aluminium-26%20from%20Massive%20Binary%20Stars.%20I.%20Nonrotating%20Models&rft.jtitle=The%20Astrophysical%20journal&rft.au=Brinkman,%20H.%20E.&rft.date=2019-10-10&rft.volume=884&rft.issue=1&rft.spage=38&rft.pages=38-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab40ae&rft_dat=%3Cproquest_cross%3E2365734232%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-e239cac610e4f82647f0a6c3dc9a59ae8a2290ddab8916b6608230b63425c2353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365734232&rft_id=info:pmid/&rfr_iscdi=true