Loading…

Searching for a Cosmological Preferred Direction with 147 Rotationally Supported Galaxies

It is well known that the Milgrom's modified Newtonian dynamics (MOND) explains well the mass discrepancy problem in galaxy rotation curves. The MOND predicts a universal acceleration scale below which the Newtonian dynamics is still invalid. We get the universal acceleration scale of 1.02 × 10...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2017-10, Vol.847 (2), p.86
Main Authors: Zhou, Yong, Zhao, Zhi-Chao, Chang, Zhe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-d5c4fea154642a1d94b0221bb72e6808a22e420673430e84d1e3ac14aa07589a3
cites cdi_FETCH-LOGICAL-c379t-d5c4fea154642a1d94b0221bb72e6808a22e420673430e84d1e3ac14aa07589a3
container_end_page
container_issue 2
container_start_page 86
container_title The Astrophysical journal
container_volume 847
creator Zhou, Yong
Zhao, Zhi-Chao
Chang, Zhe
description It is well known that the Milgrom's modified Newtonian dynamics (MOND) explains well the mass discrepancy problem in galaxy rotation curves. The MOND predicts a universal acceleration scale below which the Newtonian dynamics is still invalid. We get the universal acceleration scale of 1.02 × 10−10 m s−2 by using the Spitzer Photometry and Accurate Rotation Curves (SPARC) data set. Milgrom suggested that the acceleration scale may be a fingerprint of cosmology on local dynamics and related to the Hubble constant g† ∼ cH0. In this paper, we use the hemisphere comparison method with the SPARC data set to investigate possible spatial anisotropy on the acceleration scale. It is found that the hemisphere of the maximum acceleration scale is in the direction , with g†,max = 1.10 × 10−10 m s−2, while the hemisphere of the minimum acceleration scale is in the opposite direction , with g†,min = 0.76 × 10−10 m s−2. The level of anisotropy reaches up to 0.37 0.04. Robust tests show that such an anisotropy cannot be reproduced by a statistically isotropic data set. We also show that the spatial anisotropy on the acceleration scale is less correlated with the non-uniform distribution of the SPARC data points in the sky. In addition, we confirm that the anisotropy of the acceleration scale does not depend significantly on other physical parameters of the SPARC galaxies. It is interesting to note that the maximum anisotropy direction found in this paper is close with other cosmological preferred directions, particularly the direction of the "Australia dipole" for the fine structure constant.
doi_str_mv 10.3847/1538-4357/aa8991
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2365765060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365765060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-d5c4fea154642a1d94b0221bb72e6808a22e420673430e84d1e3ac14aa07589a3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwE9ujZfm2SPUrUKBcUq6ClMd7NtyrZZky3a_95dVvSip2Eev_eYeQidUnLJtVAjmnKdCJ6qEYDOMrqHBj_SPhoQQkQiuXo9REcxrrqVZdkAvc0shHzpNgtc-oABj31c-8ovXA4Vfgy2tCHYAl-7YPPG-Q3-cM0SU6Hwk2-gU6Cqdni2rWsfmpacQAWfzsZjdFBCFe3J9xyil9ub5_FdMn2Y3I-vpknOVdYkRZqL0gJNhRQMaJGJOWGMzueKWamJBsasYEQqLjixWhTUcsipACAq1RnwITrrc-vg37c2Nmblt6G9KhrGZapkSiRpKdJTefAxtm-ZOrg1hJ2hxHQFmq4t07Vl-gJby3lvcb7-zYR6ZTqcGS1NXZQtdvEH9m_qFzRFfQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365765060</pqid></control><display><type>article</type><title>Searching for a Cosmological Preferred Direction with 147 Rotationally Supported Galaxies</title><source>EZB Electronic Journals Library</source><creator>Zhou, Yong ; Zhao, Zhi-Chao ; Chang, Zhe</creator><creatorcontrib>Zhou, Yong ; Zhao, Zhi-Chao ; Chang, Zhe</creatorcontrib><description>It is well known that the Milgrom's modified Newtonian dynamics (MOND) explains well the mass discrepancy problem in galaxy rotation curves. The MOND predicts a universal acceleration scale below which the Newtonian dynamics is still invalid. We get the universal acceleration scale of 1.02 × 10−10 m s−2 by using the Spitzer Photometry and Accurate Rotation Curves (SPARC) data set. Milgrom suggested that the acceleration scale may be a fingerprint of cosmology on local dynamics and related to the Hubble constant g† ∼ cH0. In this paper, we use the hemisphere comparison method with the SPARC data set to investigate possible spatial anisotropy on the acceleration scale. It is found that the hemisphere of the maximum acceleration scale is in the direction , with g†,max = 1.10 × 10−10 m s−2, while the hemisphere of the minimum acceleration scale is in the opposite direction , with g†,min = 0.76 × 10−10 m s−2. The level of anisotropy reaches up to 0.37 0.04. Robust tests show that such an anisotropy cannot be reproduced by a statistically isotropic data set. We also show that the spatial anisotropy on the acceleration scale is less correlated with the non-uniform distribution of the SPARC data points in the sky. In addition, we confirm that the anisotropy of the acceleration scale does not depend significantly on other physical parameters of the SPARC galaxies. It is interesting to note that the maximum anisotropy direction found in this paper is close with other cosmological preferred directions, particularly the direction of the "Australia dipole" for the fine structure constant.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa8991</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Acceleration ; Anisotropy ; Astrophysics ; Cosmology ; Data points ; Datasets ; Dipoles ; Fine structure ; Galactic rotation ; Galaxies ; galaxies: fundamental parameters ; galaxies: kinematics and dynamics ; Hubble constant ; large-scale structure of universe ; Physical properties ; Stars &amp; galaxies</subject><ispartof>The Astrophysical journal, 2017-10, Vol.847 (2), p.86</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 01, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-d5c4fea154642a1d94b0221bb72e6808a22e420673430e84d1e3ac14aa07589a3</citedby><cites>FETCH-LOGICAL-c379t-d5c4fea154642a1d94b0221bb72e6808a22e420673430e84d1e3ac14aa07589a3</cites><orcidid>0000-0002-3901-0228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhou, Yong</creatorcontrib><creatorcontrib>Zhao, Zhi-Chao</creatorcontrib><creatorcontrib>Chang, Zhe</creatorcontrib><title>Searching for a Cosmological Preferred Direction with 147 Rotationally Supported Galaxies</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>It is well known that the Milgrom's modified Newtonian dynamics (MOND) explains well the mass discrepancy problem in galaxy rotation curves. The MOND predicts a universal acceleration scale below which the Newtonian dynamics is still invalid. We get the universal acceleration scale of 1.02 × 10−10 m s−2 by using the Spitzer Photometry and Accurate Rotation Curves (SPARC) data set. Milgrom suggested that the acceleration scale may be a fingerprint of cosmology on local dynamics and related to the Hubble constant g† ∼ cH0. In this paper, we use the hemisphere comparison method with the SPARC data set to investigate possible spatial anisotropy on the acceleration scale. It is found that the hemisphere of the maximum acceleration scale is in the direction , with g†,max = 1.10 × 10−10 m s−2, while the hemisphere of the minimum acceleration scale is in the opposite direction , with g†,min = 0.76 × 10−10 m s−2. The level of anisotropy reaches up to 0.37 0.04. Robust tests show that such an anisotropy cannot be reproduced by a statistically isotropic data set. We also show that the spatial anisotropy on the acceleration scale is less correlated with the non-uniform distribution of the SPARC data points in the sky. In addition, we confirm that the anisotropy of the acceleration scale does not depend significantly on other physical parameters of the SPARC galaxies. It is interesting to note that the maximum anisotropy direction found in this paper is close with other cosmological preferred directions, particularly the direction of the "Australia dipole" for the fine structure constant.</description><subject>Acceleration</subject><subject>Anisotropy</subject><subject>Astrophysics</subject><subject>Cosmology</subject><subject>Data points</subject><subject>Datasets</subject><subject>Dipoles</subject><subject>Fine structure</subject><subject>Galactic rotation</subject><subject>Galaxies</subject><subject>galaxies: fundamental parameters</subject><subject>galaxies: kinematics and dynamics</subject><subject>Hubble constant</subject><subject>large-scale structure of universe</subject><subject>Physical properties</subject><subject>Stars &amp; galaxies</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3jwE9ujZfm2SPUrUKBcUq6ClMd7NtyrZZky3a_95dVvSip2Eev_eYeQidUnLJtVAjmnKdCJ6qEYDOMrqHBj_SPhoQQkQiuXo9REcxrrqVZdkAvc0shHzpNgtc-oABj31c-8ovXA4Vfgy2tCHYAl-7YPPG-Q3-cM0SU6Hwk2-gU6Cqdni2rWsfmpacQAWfzsZjdFBCFe3J9xyil9ub5_FdMn2Y3I-vpknOVdYkRZqL0gJNhRQMaJGJOWGMzueKWamJBsasYEQqLjixWhTUcsipACAq1RnwITrrc-vg37c2Nmblt6G9KhrGZapkSiRpKdJTefAxtm-ZOrg1hJ2hxHQFmq4t07Vl-gJby3lvcb7-zYR6ZTqcGS1NXZQtdvEH9m_qFzRFfQ0</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Zhou, Yong</creator><creator>Zhao, Zhi-Chao</creator><creator>Chang, Zhe</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3901-0228</orcidid></search><sort><creationdate>20171001</creationdate><title>Searching for a Cosmological Preferred Direction with 147 Rotationally Supported Galaxies</title><author>Zhou, Yong ; Zhao, Zhi-Chao ; Chang, Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-d5c4fea154642a1d94b0221bb72e6808a22e420673430e84d1e3ac14aa07589a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceleration</topic><topic>Anisotropy</topic><topic>Astrophysics</topic><topic>Cosmology</topic><topic>Data points</topic><topic>Datasets</topic><topic>Dipoles</topic><topic>Fine structure</topic><topic>Galactic rotation</topic><topic>Galaxies</topic><topic>galaxies: fundamental parameters</topic><topic>galaxies: kinematics and dynamics</topic><topic>Hubble constant</topic><topic>large-scale structure of universe</topic><topic>Physical properties</topic><topic>Stars &amp; galaxies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yong</creatorcontrib><creatorcontrib>Zhao, Zhi-Chao</creatorcontrib><creatorcontrib>Chang, Zhe</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yong</au><au>Zhao, Zhi-Chao</au><au>Chang, Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Searching for a Cosmological Preferred Direction with 147 Rotationally Supported Galaxies</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>847</volume><issue>2</issue><spage>86</spage><pages>86-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>It is well known that the Milgrom's modified Newtonian dynamics (MOND) explains well the mass discrepancy problem in galaxy rotation curves. The MOND predicts a universal acceleration scale below which the Newtonian dynamics is still invalid. We get the universal acceleration scale of 1.02 × 10−10 m s−2 by using the Spitzer Photometry and Accurate Rotation Curves (SPARC) data set. Milgrom suggested that the acceleration scale may be a fingerprint of cosmology on local dynamics and related to the Hubble constant g† ∼ cH0. In this paper, we use the hemisphere comparison method with the SPARC data set to investigate possible spatial anisotropy on the acceleration scale. It is found that the hemisphere of the maximum acceleration scale is in the direction , with g†,max = 1.10 × 10−10 m s−2, while the hemisphere of the minimum acceleration scale is in the opposite direction , with g†,min = 0.76 × 10−10 m s−2. The level of anisotropy reaches up to 0.37 0.04. Robust tests show that such an anisotropy cannot be reproduced by a statistically isotropic data set. We also show that the spatial anisotropy on the acceleration scale is less correlated with the non-uniform distribution of the SPARC data points in the sky. In addition, we confirm that the anisotropy of the acceleration scale does not depend significantly on other physical parameters of the SPARC galaxies. It is interesting to note that the maximum anisotropy direction found in this paper is close with other cosmological preferred directions, particularly the direction of the "Australia dipole" for the fine structure constant.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa8991</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3901-0228</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2017-10, Vol.847 (2), p.86
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2365765060
source EZB Electronic Journals Library
subjects Acceleration
Anisotropy
Astrophysics
Cosmology
Data points
Datasets
Dipoles
Fine structure
Galactic rotation
Galaxies
galaxies: fundamental parameters
galaxies: kinematics and dynamics
Hubble constant
large-scale structure of universe
Physical properties
Stars & galaxies
title Searching for a Cosmological Preferred Direction with 147 Rotationally Supported Galaxies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Searching%20for%20a%20Cosmological%20Preferred%20Direction%20with%20147%20Rotationally%20Supported%20Galaxies&rft.jtitle=The%20Astrophysical%20journal&rft.au=Zhou,%20Yong&rft.date=2017-10-01&rft.volume=847&rft.issue=2&rft.spage=86&rft.pages=86-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa8991&rft_dat=%3Cproquest_cross%3E2365765060%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-d5c4fea154642a1d94b0221bb72e6808a22e420673430e84d1e3ac14aa07589a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365765060&rft_id=info:pmid/&rfr_iscdi=true