Loading…

Mapping Circumstellar Matter with Polarized Light: The Case of Supernova 2014J in M82

Optical polarimetry is an effective way of probing the environment of a supernova for dust. We acquired linear HST ACS/WFC polarimetry in bands , , and of the supernova (SN) 2014J in M82 at six epochs from ∼277 days to ∼1181 days after the B-band maximum. The polarization measured at day 277 shows c...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2018-02, Vol.854 (1), p.55
Main Authors: Yang, Yi, Wang, Lifan, Baade, Dietrich, Brown, Peter. J., Cikota, Aleksandar, Cracraft, Misty, Höflich, Peter A., Maund, Justyn R., Patat, Ferdinando, Sparks, William B., Spyromilio, Jason, Stevance, Heloise F., Wang, Xiaofeng, Wheeler, J. Craig
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Optical polarimetry is an effective way of probing the environment of a supernova for dust. We acquired linear HST ACS/WFC polarimetry in bands , , and of the supernova (SN) 2014J in M82 at six epochs from ∼277 days to ∼1181 days after the B-band maximum. The polarization measured at day 277 shows conspicuous deviations from other epochs. These differences can be attributed to at least ∼ of circumstellar dust located at a distance of from the SN. The scattering dust grains revealed by these observations seem to be aligned with the dust in the interstellar medium that is responsible for the large reddening toward the supernova. The presence of this circumstellar dust sets strong constraints on the progenitor system that led to the explosion of SN 2014J; however, it cannot discriminate between single- and double-degenerate models.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/aaa76a