Loading…

Uniform Atmospheric Retrieval Analysis of Ultracool Dwarfs. II. Properties of 11 T dwarfs

Brown dwarf spectra are rich in information revealing of the chemical and physical processes operating in their atmospheres. We apply a recently developed atmospheric retrieval tool to an ensemble of late-T dwarf (600-800 K) near-infrared (1-2.5 m) spectra. With these spectra we are able to directly...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2017-10, Vol.848 (2), p.83
Main Authors: Line, Michael R., Marley, Mark S., Liu, Michael C., Burningham, Ben, Morley, Caroline V., Hinkel, Natalie R., Teske, Johanna, Fortney, Jonathan J., Freedman, Richard, Lupu, Roxana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brown dwarf spectra are rich in information revealing of the chemical and physical processes operating in their atmospheres. We apply a recently developed atmospheric retrieval tool to an ensemble of late-T dwarf (600-800 K) near-infrared (1-2.5 m) spectra. With these spectra we are able to directly constrain the molecular abundances for the first time of H2O, CH4, CO, CO2, NH3, H2S, and Na+K, surface gravity, effective temperature, thermal structure, photometric radius, and cloud optical depths. We find that ammonia, water, methane, and the alkali metals are present and that their abundances are well constrained in all 11 objects. We find no significant trend in the water, methane, or ammonia abundances with temperature, but find a very strong (>25 ) decreasing trend in the alkali metal abundances with decreasing effective temperature, indicative of alkali rainout. As expected from previous work, we also find little evidence for optically thick clouds. With the methane and water abundances, we derive the intrinsic atmospheric metallicity and carbon-to-oxygen ratios. We find in our sample that metallicities are typically subsolar (−0.4 < [M/H] < 0.1 dex) and carbon-to-oxygen ratios are somewhat supersolar (0.4 < C/O < 1.2), different than expectations from the local stellar population. We also find that the retrieved vertical thermal profiles are consistent with radiative equilibrium over the photospheric regions. Finally, we find that our retrieved effective temperatures are lower than previous inferences for some objects and that some of our radii are larger than expectations from evolutionary models, possibly indicative of unresolved binaries. This investigation and method represent a new and powerful paradigm for using spectra to determine the fundamental chemical and physical processes governing cool brown dwarf atmospheres.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/aa7ff0